[Stein] W. Stein, Modular forms, a computational approach
B = ModularForms(1,12, prec=10).basis() f = B[0]; f; print "2nd coefficient=", f[2]
Cf. [Stein] Sect. 2.5
Input: k, n
Output: matrix of Hecke operator T_n on M_k(SL_2(ZZ))
k=36 n=3 M = ModularForms(1,k,prec=6).echelon_form() T = M.hecke_matrix(n) # T3 print T
k = 12 # >=4 , even n= 2 # d = dim Sk (cf. [Stein] Cor. 2.16) if k%12==2: d = floor(k/12)-1 else: d = floor(k/12) M = ModularForms(1,k, prec=d*n+1).echelon_form() # with Miller basis B = M.q_expansion_basis() # basis [f_0, f_1] as q-series hecke_operator_on_basis(B, n, k) # matrix of T_2
sage: ls = Newforms(35, 2, names='a') ; ls [q + q^3 - 2*q^4 - q^5 + O(q^6), q + a1*q^2 + (-a1 - 1)*q^3 + (-a1 + 2)*q^4 + q^5 + O(q^6)] sage: ls[0].hecke_eigenvalue_field() Rational Field sage: ls[1].hecke_eigenvalue_field() Number Field in a1 with defining polynomial x^2 + x - 4