Gaussian primes
Modular forms
Linear algebra
for i in range(15): if gcd(i,15)==1: print i^2 elif gcd(i,15)==2: print i if k%12==2: d = floor(k/12)-1 else: d = floor(k/12)
def function(n): return n; function(10)
v = [1,2,3] v.append(4)
p1=list_plot([[0,0],[2,2],[3,3]]) p2=point ((1,1)) p3=plot(x,xmin=0, ymin=0, xmax=10, ymax=10) P=p1+p2+p3 P.show(xmin=0, ymin=0, xmax=10, ymax=10)
list prime numbers <= N:
N= 100; for n in [2..N]: if is_prime(n): print n
N=100; [n for n in [2..N] if is_prime(n)]
list twin prime numbers <=NN=100 prime=[2] for n in [3,5,..,N]: for k in range(len(prime)): if n%prime[k] == 0: break elif sqrt(n) < prime[k]: prime.append(m) break print prime
Brun's constantN=100; [(n,n+2) for n in [2..N] if is_prime(n) and is_prime(n+2)]
N=1000000 T = [p for p in prime_range(2,N) if is_prime(p+2)] sum(1/p + 1/(p+2) for p in T)*(1.0)