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A realistic nucleon-nucleon potential is transformed into the low-momentum effective
one (LMNN) by the Okubo theory. The separable potentials are converted from LMNN
by the universal separable expansion method and the simple Legendre expansion. By the
calculation of triton binding energies the separability for the convergence of these ranks is
evaluated. There is a tendency that the lower momentum cutoff parameter Λ of LMNN
gains good separability.

1. Introduction Unified theory is regarded as an integration of some independent
Hilbert spaces, and effective (equivalent) theory or renormalization is a differentia-
tion into physically interested space (P space) and the uninterested rest of one (Q
space). Both theories are related strongly and they are main themes of our physics.
The relation between unified theory and effective theory is explicitly explained by
the Okubo effective theory.1) The theory is universally useful in many physics. For
example, there is a good application of the Okubo theory to the recent chiral per-
turbation theory2) in the meson-nucleon systems. The original Lagrangian of the
nucleon (N) and pion (π) fields generates the NN interaction. The bare NN interac-
tion is connected with the πNN sector we need to sweep up the sector up to the πN
threshold.

In the many-nucleon system of nuclear physics Suzuki and Okamoto have ex-
tended it to the useful scheme called the unitary-model-operator approach (UMOA).3),4)

The UMOA is an approach aimed at a many-body system by considering the effec-
tive interactions in nuclear medium, which is determined by solving the decoupling
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equation between the model space and its complement space. When the effective
theory in the same sense of Okubo theory and UMOA is applied to a two-body sys-
tem, it generates the low-momentum nucleon-nucleon (LMNN) potential by defining
a model space (P space) and its complement (Q space). Bogner et al.5),6) suggested
that their LMNN made by G-matrix scheme is useful to apply to many-body systems.

In order to look into the accuracy of LMNN one needs to calculate the triton and
the alpha-particle binding energies where the Faddeev equation or the Yakubovsky
equation gives the exact solutions to the given potential. It was concluded in ref.7)

that in the case of the realistic NN forces, g.e., Nijm-I8) or CD-Bonn9) potentials, the
recommended truncation Λ is, at least, larger than 5 fm−1 to reproduce the exact
values of the binding energies in these systems. The calculation of the ground state
energy using the LMNN for the cutoff parameter Λ ≈ 2 fm−1 yields considerably
more attractive result than the exact value. Variational principle is in possession
a repulsion property which its absolute value of the binding energy is less than the
true one. There could be an accidental cancellation between the attraction caused
from the short cutoff parameter Λ and the repulsion from the variational principle.

Besides the above discussion, we would like to investigate another property of
the LMNN interaction. When the Hilbert space is in general truncated into the
small P space, the structure of the bases is expected to be much simple and reg-
ular. The NN interaction is expanded in a separable form, which strongly reduces
the numerical cost of a relatively heavy calculation in the few-body systems.10),11)

Namely, we try to restrict the degrees of freedom for the continuum variables in the
integral equations by introducing the separable potential. In the case of a three-
nucleon system the accuracy of the calculation is examined by some benchmarks.
The separable potential has a rank of the form factors which describe the behavior
of the potential. The more precise and the lower ranks, the better. The simplicity
of the P space is considered to be reflected in the convergence of the rank or the
separability. In the application to the few-body calculation it is interesting whether
the LMNN potential has a merit of the separability. We expect that the LMNN
potential has good separability and it will reduce the numerical cost of calculations
in our physics.

In the next section we introduce two kinds of the separable expansion. The triton
binding energies are calculated by using these finite rank separable potentials in
section 3. We would like to look into the convergence of the rank or the separability
in order to show how the Hilbert space is effectively simplified. Discussion and
outlook are given in section 4.
2. Simple separable expansion and the universal separable expansion In Ref.7)

the LMNN interaction was obtained by using two kinds of methods. It was nu-
merically confirmed that both methods proposed by Glöckle-Epelbaum12) and by
Suzuki-Okamoto3),4) lead to the same LMNN interaction. The LMNN potential is
fulfilled by the following Lippmann-Schwinger equation at energy E;

T (p, p′;E) = V (p, p′) +
∫ Λ

0
V (p, p′ ′)G0(p′′,E)T (p′′, p′;E)p′′2dp′′, (1)

where T , V , G0 and Λ are the transition matrix (t-matrix), LMNN potential, Green’s
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function of free two particles and the cutoff parameter of the low momentum, re-
spectively.

Now, the momentum variable p in the integral is replaced by the other variable
x defined as

p =
x + 1

2
Λ, (2)

and the potential and the t-matrix are expanded by the separable forms

V (p, p′) pp′ ≈ V sep(p, p′) pp′ ≡
n∑

i,j=1

gi(x)λi,jgj(x′) (3)

and

T (p, p′;E) pp′ ≈
n∑
i,j

gi(x)τi,j(E)gj(x′), (4)

where g, λ are the form factor and the coupling constant, and we rewrite Eq. (1);

τi,j(E) = λi,j +
n∑
k,l

λi,kIk,lτl,j (E) (5)

with

Ik,l ≡
Λ

2

∫ 1

−1

gk(x)G0(p(x))gl(x)dx. (6)

Equation (5) is algebraically solved by the matrix inversion method. The number n
means the rank of the separable expansion.

The interval of integration is finite and the potential has no singularity, therefore,
we expect the LMNN potential is easily expanded by the simple polynomials. The
Legendre function Pi(x) may be naturally chosen for such polynomials;

gi(x) = Pi(x) (7)

and

λi,j =
(2i + 1)(2j + 1)

4

∫ 1

−1

∫ 1

−1

V (p, p′)pp′Pi(x)Pj(x′)dxdx′. (8)

The expansion is nothing new, even in the infinite boundary condition, but the
Hanover group has succeeded13) to perform the accurate Faddeev calculations for
the proton-deuteron scattering by using the Chebyshev polynomials. In section 3 we
call it the simple separable expansion (SSE).

On the other hand, one of the well-developed separable expansion scheme has
been introduced.10) The new form factor gi is defined as

gi(p) =< p|gi >≡< p|V |Pi >=
∫ 1

−1

V (p, p′(x′))Pi(x′)dx′ (9)
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and

V USE(p, p′) pp′ ≡< p|g > λ < g|p′ >=
n∑
i,j

gi(p)λUSE
i,j gj(p′) (10)

with

[
λUSE

i,j

]−1
=

∫ 1

−1

∫ 1

−1

V (p, p′)pp′Pi(x)Pj(x′)dxdx′, (11)

where [ ]−1 in Eq.(11) means the matrix inversion. The polynomials (Legendre func-
tions in this case) are only required for the linear independence, while Eq. (7) of the
SSE needs orthonormality. Therefore, one understands this expansion is a more gen-
eral method. We suppose to call it the universal separable expansion (USE). In the
case of the Faddeev calculation for nd scattering the high convergence was empha-
sized,10) but we would like to investigate the separability of the LMNN interaction
by using the SSE and the USE.
3. The calculation of the triton binding energies using the USE and the SSE The
dependence of the accuracy of the LMNN potential on the cutoff momentum Λ had
already been investigated.7),14) We are now interested in how the separability will be
developed by changing Λ. For example, we employ the CD-Bonn potential9) which
is well-known as one of the modern and precise potentials.

The triton binding energies are calculated by the USE and SSE for various values
of cutoff Λ as well as Ref.7) For the sake of simplicity the calculation is performed
only 5-channel coupled Faddeev equation. Namely, the potential is used only for 1S0

and 3S1-3D1 states. The results are shown in Table I. In the second line the exact
values of the finite values of Λ, calculated without the separable approximation, are
shown, while the true value (Λ = ∞) is -8.312 MeV.

Table I. The triton binding energies. The energy is in MeV. The exact values under the cutoff Λ

are in the second line. The “SSE” and “USE” denote the simple separable expansion and the
universal separable expansion, respectively

Λ= 3 fm−1 Λ= 5 fm−1 Λ= 10 fm−1 Λ= 20 fm−1

-8.532 -8.355 -8.329 -8.322
rank n SSE USE SSE USE SSE USE SSE USE

20 -8.532 -8.532 -8.354 -8.355 -8.319 -8.329 -8.317 -8.320
18 -8.532 -8.532 -8.353 -8.355 -8.319 -8.327 -8.308 -8.319

16 -8.532 -8.532 -8.349 -8.354 -8.253 -8.382 -7.762 -7.973
14 -8.531 -8.532 -8.346 -8.354 -7.798 -8.305 -6.833 -7.196

12 -8.526 -8.532 -8.328 -8.351 -6.605 -8.203 -5.733 -8.089

10 -8.523 -8.532 -7.963 -8.311 -5.645 -7.958
8 -8.326 -8.509 -6.730 -8.125

6 -7.182 -8.014 -6.417 -7.741

The thickly indicating numbers in Table I perfectly agree with the exact ones
for each Λ= 3, 5 and 10 fm−1. Comparing the SSE and the USE one sees that the
USE has a good convergence property because in the low rank steps the USE leads
to the corresponding exact numbers. The effective potential has a tendency of the
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better separability in the lower-rank separable form. The lower value of Λ gives the
higher separability of the LMNN interaction.
4. Discussion and outlook We calculated the triton binding energies by employ-
ing the LMNN CD-Bonn potential with some cutoff parameters Λ in the unitary-
transformation method of Okubo theory. There is a tendency that the lower cutoff
parameter we take, the better separability. The result is getting to be close to the
exact value calculated with the high-rank separable potential, and the obtained exact
value depends on the cutoff parameter.

It is well known that the binding energy consists of the positive expectation
value of the kinetic part (∼ 50MeV) and the negative expectation one from the
potential (∼ –60MeV). The difference of 43keV from the true value in the case of
Λ =5fm−1 is interpreted only 0.1% error within the potential expectation value. The
cross section in the scattering process is evaluated out of the potential expectation
value, therefore, such a 0.1% error could be invisibly small. The Faddeev three-body
scattering calculation is precisely obtained without the separable expansion,15)–17)

but, for the case of the four-body scattering one still needs a lot of efforts to obtain the
precise and stable solutions for it. The separable scheme reduces the size of memory
and the cpu time in computer. The integral technique of the contour deformation
requires the analytical property (analyticity) of the form factor function to avoid the
logarithmic singularities which arise from the two-body t-matrix and the Green’s
function in momentum space. The schemes solving the Faddeev equation with the
separable expansion method have usually been employing this contour-deformation
technique.19)

The LMNN potential apparently has no analyticity of the form factor, and there-
fore it is not easy to apply the contour-deformation technique to the few-body scat-
tering problem. Recently the complex energy method (CEM) is introduced.18) The
CEM enables us the calculation without the analyticity of the form factor because
the idea of the CEM makes good use of the analytic continuation of energy. The
solution is obtained only by using the complex analytic continuation from sample
solutions of the complex energies near the on-energy shell. The idea of the complex
energy was introduced in order to avoid the dangerous singularities.

We have a plan that the finite-rank precise separable potential will be made out
of the LMNN interaction, which is guaranteed by the good separability as shown in
the present work. The calculation by using the USE potential not only for the three-
body scattering problem but also for the four-body scattering the relevant scattering
problems will be made precisely by the CEM.

The numerical calculations were performed mainly on a IBM RS/6000SP (Re-
serch Center of Nuclear Physics, Osaka University) in Japan and partly on a Hitachi
SR8000 (Leibnitz-Rechenzentrum für die München Hochschule) and a Cray SV1
(NIC, Jülich) in Germany.
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