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Abstract. A new method is given for the model-space effective interaction. Introducing a new
operator in place of the Q-box in the Krenciglowa-Kuo (KK) method, we derive a new equation
for the effective interaction. This equation can be viewed as an extension of the KK method.
We show that this equation can be solved both in iterative and non-iterative ways. We observe
that the iteration procedure brings about fast acceleration of convergence compared to the KK
approach. We also find that the non-iterative calculation reproduces successfully any set of
the true eigenvalues of the original Hamiltonian. This non-iterative calculation can be made
regardless of the magnitudes of the overlaps with the model space and the energy differences
between the unperturbed energy and the eigenvalues to be solved.

1. Introduction
In some fields of many-body physics, it is often useful to introduce an effective interaction acting
in a truncated model space. Much effort has been made both as regards formal theories and
their applications[1].

Among many approaches, we here direct our attention to the Krenciglowa-Kuo (KK)[2] and
the Lee-Suzuki (LS)[3,4] methods. These two methods are constructed by the use of the so
called Q-box as the building block of formulation. The KK approach has very simple structure
and the solution is obtained in an iterative way. If the iteration converges, eigenvalues are given
for the states with largest overlaps with the chosen model space. On the other hand, the LS
method reproduces eigenvalues for the states which lie closest to the chosen unperturbed energy.
The LS method is complicated in structure and higher derivatives of the Q-box with respect to
starting energy are necessary if one wants to obtain more accurate solutions.

Both of the two theories yield only certain of the true eigenvalues of the original Hamiltonian.
This restriction is not, of course, desirable. In a formal point of view, the Q-box itself contains
information regarding all of the true eigenvalues. For a given model space of dimension d, there
would be a method of reproducing any d eigenvalues among all the true eigenvalues.

In this report, we want to show that a method exists for reproducing all the true eigenvalues
of the original Hamiltonian if the Q-box is given accurately enough.

2. Krenciglowa-Kuo method
We assume that the Hamiltonian H is composed of the unperturbed Hamiltonian H0 and the
perturbation V , i.e., H = H0+V . The entire Hilbert space is partitioned into the d-dimensional



model space (P space) and its complement (Q space) with the projection operators P and Q,
respectively. We note some properties, P + Q = 1, P 2 = P,Q2 = Q and PQ = QP = 0. We
here assume that H0 is decoupled between the P and Q spaces as

H0 = PH0P +QH0Q. (1)

We further assume that the P-space states have a degenerate unperturbed energy E0, i.e.,

PH0P = E0P. (2)

Thus the P-space eigenvalue equation is written with the P-space effective interaction R and
the P-space eigenstate |ϕk⟩ as

(E0P +R)|ϕk⟩ = Ek|ϕk⟩, (k = 1, 2, · · · , d). (3)

The effective interaction can be constructed by the use of Q-box which is an operator of energy
variable E and is defined as

Q̂(E) ≡ PV P + PV Q
1

E −QHQ
QV P. (4)

The Krenciglowa-Kuo (KK) approach leads to a solution for R as

RKK =
d∑

k=1

Q̂(Ek)|ϕk⟩⟨ϕ̃k|

=
d∑

k=1

(Ek − E0)|ϕk⟩⟨ϕ̃k|, (5)

where ⟨ϕ̃k| is the biorthogonal state of the P-space eigenstate |ϕk⟩ in Eq. (3) defined through
⟨ϕ̃k|ϕk′⟩ = δkk′ . We here note that, as seen in Eq. (5), the determination of the effective
interaction RKK is equivalent to solving d eigenvalues {Ek}. In general, the K-K solution is
obtained in an iterative way based on Eqs. (3) and (5). It has been known that if the iteration
converges, the KK solution yields d eigenvalues of the states with largest P-space overlaps among
the eigenstates of the original Hamiltonian H.

We here want to show that there is another way of obtaining the KK solution. We consider
an eigenvalue equation for a given energy E

[E0 + Q̂(E)]|ψk⟩ = Gk(E)|ψk⟩, (k = 1, 2, · · · , d), (6)

where {Gk(E)} and {|ψk⟩} are the eigenvalues and the eigenstates, respectively. For a given E,

there are d eigenstates because Q̂(E) is a d-dimensional operator. Thus, we have d functions of
variable E, which we label in order of energy as G1(E) < G2(E) < · · · < Gd(E).

It may be clear from Eqs. (3) and (6) that the eigenvalues {Ek} in Eq. (3) can be given by
solving equations

E = Gk(E), (k = 1, 2, · · · , d). (7)

We can prove that any solution of Eq. (7) agrees with one of the true eigenvalues of H and the
eigenstate |ψk⟩ does with |ϕk⟩ in Eq. (3).

The solutions {Ek} to Eq. (7) are obtained as crossing points of two graphs of y = Gk(E)
and y = E. It should be noted that this procedure of solving eigenvalues {Ek} can be made
independently of the magnitude of the P-space overlap. Therefore we can, in principle, reproduce
all the true eigenvalues of H. However, as we see in Eq. (4) there appear poles in Q̂(E) when

E approaches one of the eigenvalues of QHQ. The poles in Q̂(E) induce also poles in Gk(E).
Such a situation causes numerical instability in solving Eq. (7) with {Gk(E)} around the pole
positions.



3. Extension of the Krenciglowa-Kuo method
We define an operator in terms of the Q-box as

Ẑ(E) ≡ 1

1− Q̂1(E)

[
Q̂(E)− (E − E0) · Q̂1(E)

]
, (8)

where Q̂1(E) is the energy derivative of the Q-box given as

Q̂1(E) ≡ dQ̂(E)

dE

= −PV Q 1

(E −QHQ)2
QV P. (9)

Hereafter we shall refer to Ẑ(E) as the Z-box. It should be noted that if E = E0, the Z-box
agrees with the first-order recursive solution in the LS method[4].

The Z-box has the following properties:

(i) By using Eqs. (4), (5) and (8), we have

d∑
k=1

Ẑ(Ek)|ϕk⟩⟨ϕ̃k| =
d∑

k=1

1

1− Q̂1(Ek)

[
RKK − Q̂1(Ek) ·RKK

]
|ϕk⟩⟨ϕ̃k|

=
d∑

k=1

RKK|ϕk⟩⟨ϕ̃k|

= RKK. (10)

The above fact means that, replacing Q̂(E) by Ẑ(E) in Eq. (5), a new solution for the
effective interaction R can be derived as

REKK ≡
d∑

k=1

Ẑ(Ek)|ϕk⟩⟨ϕ̃k| (11)

which we call the extended Krenciglowa-Kuo (EKK) solution.
In a similar way as in Eq. (6) we solve the d-dimensional P-space eigenvalue equation

for the Z-box for a given variable E as{
E0 + Ẑ(E)

}
|χk⟩ = Fk(E)|χk⟩, (k = 1, 2, · · · , d), (12)

where {Fk(E)} are the eigenvalues and {|χk⟩} are the eigenstates. We here label Fk(E) in
order of energy as F1(E) < F2(E) < · · · < Fd(E). In the same way as in Eq. (7), the true
eigenvalues {Ek} are given by solving the equations

E = Fk(E), (k = 1, 2, · · · , d). (13)

(ii) We can prove that if E is one of the true eigenvalues {Ek} satisfying Eq. (5), the energy

derivative of Ẑ(E) becomes zero, and we have

dFk(E)

dE
= 0. (14)

This property of the Z-box plays important roles in two ways:
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Figure 1. Dependence of Gk(E) on E with x = 0.2. The graphs of y = G1(E) and y = G2(E)
are shown in solid and broken lines, respectively. The direct line denotes the graph of y = E.

(a) The two equations (6) and (12) are not identical. The operator Ẑ(E) is different from

Q̂(E) as a P-space operator. Therefore, Eq. (13) based on the Z-box has possibly excessive
solutions, or spurious solutions, different from the true eigenvalues {Ek}. However, we can
remove easily these spurious solutions according to the condition in Eq. (14).
(b) In the same way as in the KK approach we can derive the effective interaction REKK in
an iterative way. The iterative calculation in this approach can be made only by replacing
Q̂(E) in the KK method by Ẑ(E). It must be pointed out that, due to the property of

Eq. (14), the iteration based on Ẑ(E) converges quite rapidly as we see in Table 1. The new
method can be understood as an application of the Newton-Raphson (NR) method which
is used widely for accelerating convergence in solving non-linear equations iteratively.

(iii) In the vicinity of the poles in Q̂(E), Q̂1(E) has the dominant contribution in Ẑ(E), which

may be clear from Eqs. (4), (8) and (9). Resultantly Ẑ(E) becomes

Ẑ(E) ≈ (E − E0)P, (15)

and thus there appear no poles in Ẑ(E). Therefore, the functions {Fk(E)} are continuous
and differentiable for any E. This fact of the new approach guarantees stability in
numerically solving the crossing points of two graphs of y = Fk(E) and y = E. We
want to emphasize here that the procedure of solving {Ek} is regardless of the properties
of the eigenstates of the original Hamiltonian H, i.e., the P-space overlap or the position in
energy.

4. A schematic model analysis
In order to obtain some assessments of the new approach we consider a model problem for which
exact solutions can be derived easily. The model Hamiltonian we adopt here is given with the
coupling strength x, the dimension of the entire space n = 4, the dimension of the P space d = 2
and the unperturbed energy E0 = 1 as

PH0P =

(
1 0
0 1

)
, PV P =

(
0 5x
5x 25x

)
, PV Q =

(
−5x 5x
5x −8x

)
, (16)
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Figure 2. Dependence of Fk(E) on E with x = 0.2. The graphs of y = F1(E) and y = F2(E)
are shown in solid and broken lines, respectively. The direct line denotes the graph of y = E.

Table 1. Convergence of the eigenvalue of the lowest-lying state obtained with the KK and
EKK methods for the model Hamiltonian with x = 0.05. Correct digits with the KK and EKK
methods are given in n-th iteration step. The starting energies for (E1, E2) are taken to be
(0.0, 0.0). The notation c indicates convergence to more than fifteen decimal places. The exact
eigenvalue here is 0.8904504858869942.

n correct digits (KK) correct digits (EKK)

1 0.9· · · 0.89· · ·
2 0.89· · · 0.890450· · ·
3 0.8904· · · 0.89045048588699· · ·
4 0.890450· · · c
5 0.8904504· · · c
6 0.89045048· · · c
7 0.8904504858· · · c

and

QV P =

(
−5x 5x
5x −8x

)
, QHQ =

(
3− 5x x
x 9− 5x

)
. (17)

This model Hamiltonian H was introduced many years ago by Hoffmann et al.[5] and the
structure of H was investigated in Ref. [6]. We first depict, in Figs. 1 and 2, the dependence of
the functions Gk(E) and Fk(E), respectively, on the energy variable E with the strength x = 0.2.
One may see in Fig. 1 that there are two poles in the graph of Gk(E). On the other hand,
poles disappear in the graph of Fk(E) associated with the Z-box. One observes four crossing
points between y = Gk(E) and y = E except for pole positions, and six crossing points between
y = Fk(E) and y = E for k = 1, 2. The spurious solutions in Fig. 2 for y = Fk(E) can be easily
removed by the condition that the energy derivative at the crossing points should be zero.



Next we show in Table 1 the results in the iterative method for the KK and EKK solutions.
The convergence rate in the EKK method is much higher than that in the KK method. The EKK
method reaches the convergence to fourteen decimal places after only three iterations. However,
the iterative calculation is not always recommendatory, because convergence conditions are not
always clear and we cannot control these conditions. In this respect, it would be recommended to
solve directly the crossing points of y = Gk(E) or y = Fk(E) and y = E. We could reproduce all
the true eigenvalues of H by calculating the crossing points in a non-iterative way, for example,
the bisection method.

5. Conclusion
In many cases of calculating the effective interaction, iteration and/or recursion methods, for
example, the KK and LS methods, have been employed. However, one has seen that these
methods reproduce only certain of the exact solutions. In general, it is quite difficult to control
convergence of the iteration and/or the recursion. Moreover, these methods do not work well if
a solution to be solved lies in the vicinity of the pole position. Such a case takes place actually
in the calculation using the Q-box as in the KK approach.

In the present report we have proposed a new approach by introducing a new operator, the
Z-box, and the functions {Fk(E)}. Characteristics of this approach are as follows: (a) The
eigenvalues in the model space can be obtained by calculating the crossing points of two graphs
y = Fk(E) and y = E. The functions {Fk(E)} give us all the information on the eigenvalues
of the original Hamiltonian H. The crossing points can be calculated by using a non-iterative
method, such as the bisection method. In this case convergence problem does not occur anymore.
(b) The solutions can be also calculated by applying an iteration method. In this case, the use
of Fk(E) accelerates convergence compared to the usual KK approach. We want to notice that
this approach is understood essentially as an application of the Newton-Raphson method for
solving a non-linear equation. (c) The function Fk(E) is continuous and differentiable for any
of E. Instability or difficulty due to the presence of poles does not occur anymore as long as we
use the function Fk(E).

We may conclude that the present formulation on the procedure for obtaining the effective
interaction removes some difficulties encountered in the usual approaches, such as the KK and
LS methods. This approach makes us free from divergence of iteration or the pole problem, and
therefore it may have possibility of applying widely to many-body problems.

6. References

[1] Kuo T T S and Osnes E 1990 Lecture Notes in Physics, 364 (Springer-Verlag)
[2] Krenciglowa E M and Kuo T T S 1974 Nucl. Phys. A235 171
[3] Lee S Y and Suzuki K 1980 Phys. Lett. B91 173
[4] Suzuki K and Lee S Y 1980 Prog. Theor. Phys. 64 2091
[5] Hoffmann H M, Lee S Y, Richert J and Weidenmueller H A 1973 Phys. Lett. B45 421
[6] Suzuki K, Okamoto R, Ellis P J and Kuo T T S 1994 Nucl. Phys. A567 570


