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Abstract: A ring diagram model-space nuclear matter theory is formulated and applied to the calculation
of the binding energy per nucleon (BE/ A), saturation Fermi momentum (kg) and incompressibility
coefficient (K) of symmetric nuclear matter, using the Paris and Reid nucleon-nucleon potentials.
A model space is introduced where all nucleons are restricted to have momentum k < ky, typical
values of k,, being~3.2 fm~!. Using a model-space Hartree-Fock approach, self-consistent single
particle spectra are derived for holes (k< kg) and particles with momentum k;.<k<ky. For
particles with k> ky, we use a free particle spectrum. Within the model space we sum up the
particle-particle ring diagrams (both forward- and backward-going) to all orders. A rather simple
expression for the energy shift AEZP is obtained, namely AEfP is expressed as integrals involving
the trace of Y(A) Y (A)GM where GM is the model-space reaction matrix, the Y’s are transition
amplitudes obtained from solving RPA-type secular equations and A is a strength parameter to be
. integrated from 0 to 1. We have used angle-average approximations in our calculations, and in
this way different partial wave channels are decoupled. For the 38,-*D, channel, the effect of the
ring diagrams is found to be particularly important. The inclusion of the ring diagrams has largely
increased the role of the tensor force in determining the nuclear matter saturation properties, and
consequently we obtain saturation densities which are significantly lower than those given by most
other calculations. For the Paris potential, our results for BE/A, ke and K are respectively
17.38 MeV, 1.42 fm~" and 96.3 MeV. For the Reid potential, the corresponding results are 15.15 MeV,
1.30 fm~! and 110.7 MeV. Our calculated values for the binding energy per nucleon and saturation
density are both in rather satisfactory agreement with the corresponding empirical values.

1. Introduction

A primary aim of nuclear matter theory is W

of the empirical nuclear matter properties such as the binding energy per nucleon
BE/ A, saturation density p, (or saturation Fermi momentum kg) and the incompress-
ibility coefficient K. In fact there have been a very large amount of works '®) in
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this area, and certainly nuclear matter theory has played a very important role in
nuclear physics.@_s_tz_m’din_g_dw nuclear matter theory has been the
inability of almost all theoretical calculations in obtaining BE/A and po which are
in simultaneous agreement with the corresponding empirical values. ") (The accepted
empirical values for BE/A, po and K are respectively ~16 MeV, ~0.17 fm™! and
~200 MeV. Recently Brown and Osnes %) have suggested that K should be consider-
ably smaller, being ~110 MeV.) Frequently, if the calculated BE/ A is satisfactory,
then the calculated po is too high. And if the calculated p, is more or less correct,
then the calculated BE/A is usually far from being adequate.

There have been a number of developments aimed at resolving the above dis-
crepancy. Many believe that a major rethinking of the two-body nucleon-
nucleon(NN) potential is in order %). The concern here is primarily that the usual
practice of employing only a two-body NN potential which fits the NN scattering
data in nuclear matter calculations is indequate in reproducing the empirical proper-
ties of nuclear matter. In fact, a recent nuclear matter calculation by Kuo, Ma and
Vinh Mau '°) indicated that a small three-body interaction, cast,in the form of a
density dependent two-body interaction, was quite helpful in bringing the calculated
values of both the BE/A and po to reasonable agreement wit iEi
;F"Another Tine of developments is in the direction of refining the many-body methods
{ used in nuclear matter calculations. Many elaboorate many-body methods have
" been advocated, such as the exp S approach 1) 'the Green function approach %), the

hyper-netted chain approach 12y and the model-space approach 13y All these

approaches are formulated to give a more accurate nuclear matter theory than the
/ Erototxgical lowest-order BHF theory with a discontinuous single-particle spectrum.

The above theories are all non-relativistic. It should be noted that Shakin and his

, collaborators '¥) have recently proposed a highly promising relativistic nuclear

& matter theory, suggesting that relativistic effects may be very important in reproduc-
ing the correct nuclear matter saturation density.

The main purpose of the present study is a rather confined one. Recently, Yang,

Heyer and Kuo [YHK] 15) have proposed a convenient and rigorous method for

summing up certain classes of ring diagrams to all orders for the calculation of

ground state energies of general many-body systems. It seems to be of much interest

to investigate the application of this method to nuclear matter calculations. In

particular, the long range correlations arising from ring diagrams correlations in

nuclear matter seem not to have been studied in a general way in existing nuclear

matter calculations, and we feel that they may play an important role in determining

the nuclear matter bulk properties BE/A, p, and K and the inter-relation among

them. The combination of the YHK ring diagram method and the model-space

nuclear matter approach 13) may provide a new and suitable formulation for studying

such@ig range correlations in nuclear mattet. In this paper, we formulate and

carry out model-space muclear matter calculations where within a chosen model
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space the particle-particle ring diagrams of nuclear matter are summed to all orders.

The effect of these ring diagrams on BE/ A, p, and K are, in particular, examined.

Our calculation is also motivated by the following physical intuition. In treating
many-body problems, it is definitely of great importance to choose a “good” single
particle (s.p.) potential, in the sense that this potential should be a good representa-

: tion of the actual average nuclear field felt by a nucleon in the nuclear medium
H under consideration. From this view point, the conventional BHF s.p. spectrum is
certainly unsatisfactory because it has a large artificial discontinuity at the Fermi,
_surface kr 3). We will adopt the model-space approach of Ma and Kuo 3) for
determining the s.p. potential. This approach advocates the following partition
, concept. A model space P is defined as a configuration space where all nucleons
are restricted to have momentum k < ky, ky being the momentum space boundary
1 of P. As is discussed later, a typical value for ky is ~3 fm~'. It is then conjectured ‘,
that WMMMHMEMM be adequately 3
treated with the usual G-matrix apprBach. In fact, these correlations are primarily ‘“
due to WM& Nuclear correlations whose
intermediate states are inside P should be treated more thoroughly, such as including
the ring diagrams to all orders. Based on the above concept our nuclear matter

/ calculations are carried out in the following two-step approach. First, we choose a
model space P and calculate self-consistently the model-space reaction matrix and
s.p. spectrum. Then, within P, we sum up the particle-particle ring diagrams to all

* orders using the YHK method. Calculations are carried out using both the Paris '°)

and the Reid '7) NN potentials.

The present work is a continuation of the model-space BHF (MBHF) nuclear
matter calculations of Ma and Kuo %), and Kuo, Ma and Vinh Mau 10y* In their
calculations, a space P was first chosen and within P a continuous s.p. spectrum
was determined self-consistently. Then the MBHF calculations were carried out by
summing up only the upward-going G-matrix ladder diagrams within P to all orders.
The binding energies given by these MBHF calculations are already fairly satisfac-
tory. Hence there is the concern that nuclear matter may become overly bound when
we include ring diagrams to all orders in our calculations. This concern in fact
appears to be a very cogent one because in our model space approach the s.p.
spectrum is continuous. Thus there is either no gap between particle and hole states,
or a relatively small gap at kg if one chooses to treat the hole s.p. spectrum slightly
differently from the particle one 13). Consequently it is relatively easy to have

. - =particle-hole excitations, and the effect of the ring diagrams for such model-space
iy {_ calculations may be particularly large or even overly so. Needless to say, it is this

' 7 concern which has provided us with additional motivation for carrying out the
‘, present nuclear matter calculations.

B P

* Several calculational details of the MBHF method for nuclear matter calculations were not given
in refs. 1%1%). We will describe them in this paper.
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Fig. 1. Low-order linked diagrams of the energy shift AE,= E,— W,. Each wave line vertex denotes an
anti-symmetrized vertex of V.

The contributions to AE, from diagrams (a), (8) and (y) of fig. 1 are )
respectively

-1 (* o _
AEgp(l)‘_‘;l? dw e™’ Fj(w) Vi, (2.1)
—'1 [« iw0* X/ \/
AERP(2) =;r; dw e’ %E‘j(w) Visa Fa(®) Vi » (2.2)
o —00
-1 (>
AEgp(:;) =—2; dw ele %E}(w) ‘/ijk!Fkl(w) Vklmn an(w) me‘j ’ (2'3)

where repeated indices are summed over all the s.p. states without restriction (e.g.,
we sum over both i>j and i <j), and Fj; is the unperturbed pair propagator given

by gl
n:n. n:n.
F; = — - . . .
i(@) w—(&+g)+i0 w—(g+g)—i0 (2.4)
The matrix elements of V are defined as
‘7u'jki =3( Vit — Vi) - (2.5)

Note that Vj, is the simple product matrix element [d’r, d°r, dF(r)odF(r) -
V(rz)¢u(r)di(ry). In eq. (2.4), n;=1 if k;<kr and=0 if k;> kg, and A,=1—n,.
In addition, the factors +i0 in the denominators are abbreviations for *in in the
limit of 17 ->0". (0" here and in egs. (2.1) to (2.3) denotes an infinitesimally small
positive quantity.) This notation will be used from now on.

In this way, the particle-particle (pp) ring diagrams such as those shown by
diagrams (a), (B) and () of fig. 1 can be summed up to all orders, leading to

-1 [*® L _ _ _
AEf=-— J dw e tr (FV+L(FV)*+L(FV)+- - -}, (2.6)
T —co

where the series inside the curly brackets form a logarithmic function. However,
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this is not so convenient for calculation. Let us introduce a strength parameter A,

and convert eq. (2.6) into

. __I _d_AJ‘ iw0* (/ /\2 /\3

» AEgRP = dw e”” tr {AFV+(AFV)*+(AFV)’+- - -}. (2.7)
2mi Jo A J_wo

It is of interest to note that the introduction of the strength parameter A makes the

quantity inside the curly brackets a simple geometric series. This is not only

computationally convenient but also physically desirable - it tells us that the ground

state energy shift AEF® is dependent on how the many-body system evolves from

g a non-interacting system (A =0) to a fully intereacting system (A =1).

' ' We now introduce a_, )«;gependent particle-particle Green function GPP(w, A)

i defined by
ykl(w A) u(w)ay,kl_'—F‘y(w)A‘/l mn( nkl(w A) (2'8)
) ' i Then AERP of eq. (2.7) can be cast into the compact form
dA ° w0t 7 i
AE""—— dw e™” tr {G”(w, A)VA}. (2.9)
27 ), 2771 —®

An alternative approach is via the A-dependent generalized reaction matrix_
KPP(w, A) defined by

ukl(w A-) AV, kl+)“/umnan(w) mnkl(wa )‘) - (210)
Then AESP is given by
dA‘ iw0*
- AE""—— dwe tr{ F(w)K"P(w, A)}. (2.11)
Bl 27 0

The task now confronting us is how to actually calculate AE§® for nuclear matter.
o The expressions (2.9) and (2.11) are both compact and appealing but it is more
) important to investigate whether they provide a convenient and practical scheme
for actual calculations. Before investigating this question for nuclear matter, let us
: first point out that our AESP sums up the particle-particle ring diagrams to all
N orders, including diagrams (a), (B8) and (y) of fig. 1, and the general particle-particle
ring diagram (i) of fig. 2. Thus we draw the general ring diagram in the circular
form shown in fig. 2 to emphasize the fact that the two lines in each pair propagator
. can be either both particles (> kg) or both holes (<kg). Hence our present formula-
P tion includes contributions to AE, from repeated interactions between two hole
lines (i.e. hole-hole correlations) to all orders and also ground-state correlation
interactions connecting two particle to two hole lines to all orders. In contrast, only
the repeated interactions between a pair of particle lines are included in the usual
BHF type nuclear matter calculations, as illustrated by diagram (ii) of fig. 2.
We have found that it is more convenient in several aspects to use eq. (2.9) than
eq. (2.11) for calculating AE§P. This is because the frequency integration (i.e. [dw)
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(i) (ii)
Fig. 2. (i) A general ring diagram included in the present work. Note that i and j can be either both

particles (>kg) or both holes (<kg). (i) A general diagram included in the usual BHF type nuclear
matter calculations. Note that all p’s are restricted to be >kg, and h’s < k.

in the former is considerably easier to carry out than in the latter. '*) Hence, in the
present work, we use the former scheme. To carry on the calculation, we first need
to calculate the Green function GPP and also find a way to perform the w integration.
A convenient way to proceed is to write G®® in its Lehmann’s represéntation, namely

X (G, XT(KLA) . Yo (if, A) YE (KL A)

G{-},':,(w,/\)=§ w-w,(A)+i0 T w—-w,(A)-i0 ’ (2.12)
where
w,(A)=E () -E§(r), (2.12a)
wn(A\)=E§—-En3*1), (2.12b)
Xa(#, 1) =(¥3F(N)|a;a| T2 (1)), (2.12c)
Yo (3, 1) = (W57 (M)|aa,| w5 (1)) (2.12d)

Here the eigenfunctions and eigenvalues are defined by (Ho+AH))¥{(A) =
EGV)¥E(A), (Ho+AH,)WA2(\) = EZ"2(A)¥2*2()), and similarly for TaA2())
and E;,"%(A). Substituting the above into eq. (2.9) leads to the result ')

1 dA —
AEgP=J o y % Y. (i, A\) YE(KI, M) VA, (2.13)
0 m i
(A-2)

where the amplitudes Y,, are calculated from the RPA-type equation

Z {(8i+ sj)aij,ef.i-(ﬁiﬁj - ninj)A‘_/ijef} Ym(ef; A) = w:n(/\) Ym(iis A-) . (2°14)
ef

Note that the factor (A;7; — n;n;) can also be written as (1—n;—n;). It should be
emphasized that in eqgs. (2.13) and (2.14) the summations are unrestricted, namely
the indices for the summations are in fact 1>j and i <j, and similarly for k, I, e and
J- Some simplification may be effected by making use of the symmetry properties

of V and Y,, as depicted by egs. (2.5) and (2.12d). The convergence factor ¢“°" in
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eq. (2.9) has played an important role in obtaining eq. (2.13) from egs. (2.9) and
(2.12). This factor enables us to convert the o integral in eq. (2.9) into a contour
integral closed in the upper » plane. This point will be discussed in more detail
when we introduce the model-space G-matrix. The normalization of the Y,, vectors
: i of egs. (2.12d) and (2.14) will play an important role in our calculation and we will
: discuss this matter in sects. 3 and 4.
; For nuclear matter calculations, V in egs. (2.13) and (2.14) represents the matrix
F ’ elements of a NN potential such as the Paris or Reid potential. Both have very
! strong short range repulsions and hence their V matrix elements are generally
B positive and very large. (V becomes infinite, if the NN potential employed has a
i hard-core short range repulsion.) Thus egs. (2.13) and (2.14) are clearly not suitable
Z for applying to many-body problems with interactions having strong short range
. repulsions. (In fact these equations are undefined in the case of hard-core NN
: ) potentials.) Some type of G-matrix partial summations are needed to take care of
| - the strong short-range NN correlations. There is another difficulty. As it stands, €q.
1; Al (2.14) is a matrix equation of infinite dimension. This is because its indices i, j, €
and f run over all the s.p. states, of which there are infinitely many. (For nuclear
ah matter, its s.p. states are continuum plane-wave states with momentum from 0 to
g | 00.) Thus €eq. (2.14), as it stands, is not convenient for actual calculations. It would
: be very helpful if some form of truncation of it can be effected. Hence to carry out
@ nuclear matter calculations based on the formulation outlined by egs. (2.13) and
: (2.14), the two above mentioned difficulties must first be overcome.

A1
Dk
pprEREeer

We introduce here a model-space approach in order to reformulate the ring
r{éﬁz diagram method described in sect. 2 so that it can be expressed in terms of the

model-space reaction matrix GM. In this way, as will be seen shortly, we can
i overcome the two difficulties just mentioned. Let us divide the s.p. states into two
groups: those with momentum k> ky and those with k < ky. In drawing diagrams,
: the propagator corresponding to the former will be denoted by upward-going railed
alt lines (see fig. 3). Our model space P is defined as a configuration space where all
nucleons are restricted to have momentum k< kv, km being the momentum space

) , i i

i

%

% 3. Model space approach
3

: ‘s ; 77 = H 4o +m n 4 ----
e m n
e P

E
’ % Fig. 3. Structure of the model space GM matrix. Here the railed lines m, n and n’ denote s.p. states with
1
i
i
¥

momentum >ky,. m' denotes a s.p. state with momentum between ke and ky -
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Furthermore, at least one line of each of the (, v), (p, q) and (r, s) propagators
must be outside the P space. In this way, we assure that there will be no double
counting in combining particle-particle ring diagrams with V vertices into those
with G™ vertices. For example, any particle-particle ring diagram with three P-space
propagators is included in the series shown in fig. 4. The sum of this entire series
is a particle-particle ring diagram which is third order in G™. Similarly all of the
ring diagrams with four segments of P-space propagators are grouped together to
form a corresponding ring diagram which is fourth order in G™ vertex.
Thus we can now write AEE® in two equivalent ways, either

AES® =AESP(1)+ AERP(2)+ AESP(3) +- - - (3.4)
or
AE§P=AE§P(1')+ AEEP(2') + AERP(3") +- - - . (3.5)

The various terms in eq. (3.4) have been given by egs. (2.1) to (2.3). For example,
AEGEP(3) is third order in V. In contrast, the various terms in"eq. (3.5) are now
expressed in terms of the GM interactions. For example, AESP(3’) is third order in
GM. AEGP(n') differs from AE§P(n) only in the replacement of the V’s of the latter
by the corresponding G™’s and in the restriction on the summation of the indices.
For example, AE§P(3') is given by

AEFP(3") =2—7:l. J do e} Fj(w)Glu(w)

—co ijklmn
&P

X Fkl(w)G_Z'mn(w)an (w)c—;r]\:ny (w) ’ (3°6)

where we note that the indices (i, j, ... n) are summed within the model space only.
Based on the above results, the steps leading to the egs. (2.8) and (2.9) can be
easily repeated using the GM vertices. Thus corresponding to eq. (2.9) we now have
-1 ['da [® iw0* AM
AEP=— | — dw e™" trp {G"P(w, A\)GM(w)A}, (3.7)
2 0 A —co
where the subscript P denotes that the trace is to be taken only within the model
space P, and the model space reaction matrix G™ has been given by egs. (3.3) and
(3.1). The Green function G™ is now given in terms of G™, namely

Ghi(w, M) = F(0)8;00+ Fy(@0)AG ) (0) Ga(@, 1) (3.8)

where note that the indices i,j,... and n are all within the model space P, and
repeated indices are summed over freely (i.e. we sum over m = n). Thus eq. (3.8)
is a model-space effective Dyson’s equation. General properties of this type of the
model-space effective Dyson’s equations for the Green functions have been studied
by Wu and Kuo. '°)
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they are now calculated from a model space self-consistent equation of the RPA
type namely

2}{(8.‘ + Ej)6ij,ef+ (ﬁiﬁj - ninj))\Lijef(w)} Ym(ej; /\) = Mm (ll), A) Ym(i]; A) (3'14)

with the self-consistent condition for w
Mm (0, A)=w=w,()), (3.14a)
Ljy(w)= G_ywlf(w) . (3.14b)

Since the derivation and general properties of the above type of self-consistent
equations have been given in detail elsewhere %), we will not give the details of
the derivation of the above equations except to mention that they are obtained from
egs. (3.8), (2.12) and (2.4). In eq.(3.14), Lisin general an irreducible vertex function
containing both two-body and one-body terms (self-energy insertions). Here, as
indicated by eq. (3.14b), we include in L only the two-body reaction matrix GM,
As we discuss later, it is important to also include one-body terms in L when s.p.
self-energy insertions are taken into account.

It should be emphasized that the normalization condition for the Y-amplitudes
is 20)

2 NYu(pip, P = Y, (hyhy, M) =2 (3.15)
Pr>p2>kg kg>h,>h,
€P epP

with

P ={1_6#m(w,/\)

Jw

In the above, p, and p» are obviously the particle S.p. states within the model space
P and h, and h, are the hole S.p. states within P.

A brief summary of our calculational procedure is in order. The model space
reaction matrix G™ is calculated from egs. (3.1) to (3.3). Then we solve the
self-consistent equations (3.14) and (3.14a). This may be done by a graphical method
where we plot u,,(w, ) as a function of w. The self-consistent solution is given by
the point where o = pu,, (w, A) is satisfied. The slope of the u,, (w, 1) curve at this
point is then used in eq. (3.16) to determine the normalization constant Z,,. In this
way, we can calculate Y,, and w,,. Using these and G™, the energy shift is then
calculated using eq. (3.13). Recall that Y, is the A-> (A -2) transition amplitude
defined in eq. (2.12d). If these amplitudes can be determined experimentally, then
we can use them directly in eq. (3.13). We don’t know how realistic it is to do so,
but this seems to be an interesting prospect for further study.

How does the present ring-diagram approach compare with the usual BHF '?)
and the model-space BHF (MBHF) approaches '%%) for nuclear matter? It may be

-1 )
} . (3.16)
o=u, (w,A)

Ll
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most convenient to explain this by first examining their diagrammatic structures.
As shown in fig. 6, diagram («) is the typical two-hole-line diagram included in the
usual BHF theory. (h, and h, are hole lines.) Here the box B represents a BHF
G-matrix using discontinuous s.p. spectrum, _namely a self-consistent spectrum for

the hole lines but free p_a_rILCLﬁ spectrum for the partlcle lmes Diagram () is a

typical dlagram included in the MBHF theory of nuclear matter '*'*). Here each
M-box denotes a model-space reaction matrix G™ defined in eq. (3.1) and p, to p,
are all particle lines (with momentum between ky, and kg), and h, and h, are hole
lines. The main difference between BHF and MBHF is in the treatment of the S.p.
spectrum between kr and ky, (the momentum space boundary of the model space).
In BHF, one uses a free particle spectrum in this region, while in MBHF one uses
a self-consistent spectrum in this region as we will discuss later. The present
calculation goes considerably further. Here we sum up the ring diagrams of the
type shown by diagram () of fig. 6 to all orders. Again, each M-box represents a
GM vertex whose intermediate states are all particle states outside the model space
P. A specific feature is that the intermediate states i, j, k,...to s are all within P
and each pair of them, such as the pair (rs), can be either both particles or both
holes. Hence the present method sums up the particle-particle ring diagrams of all
possible zig-zag shapes to all orders. Clearly the present method sums up a much
larger class of diagrams than BHF and MBHF.

It 1s of interest to note the following feature of eq. (3.13). The expression AE}”
given by eq. (3.13) reduces to the corresponding expression for the BHF case if we
set ky = kg and, in addition, set the Y,, amplitudes equal to their unperturbed values
(i.e.ineq. (2.12d) we replace the true wave functions ¥, > and ¥ by the respective
unperturbed wave functions @, > and @'). In eq. (3.13), the Y,, amplitudes serve
as a kind of distribution function. The effect of the particle-particle ring diagrams
is exhibited by the deviation of these amplitudes from their respective unperturbed
values. Clearly the magnitudes and distributions of the Y-amplitudes will play an
instrumental role in our present calculation.

% fe
h hg AP AP,
7%
(a) (B)

Fig. 6. Typical diagrams included in the usual BHF («), the MBHF (), and the present ring-diagram
(y) approaches for nuclear matter. Box B denotes a BHF reaction matrix, and box M denotes a
model-space reaction matrix of eq. (3.1).
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4. Calculation and results

4.1. SINGLE PARTICLE POTENTIAL AND SPECTRUM

we must know U. For nuclear matter, we use plane waves for ¢i and, hence, the
quantity to be determined is the s.p. spectrum Ep.

We adopt a model-space Hartree- Fock method ) for determining ¢,. The prin-
ciple of this method is briefly described below. Using effective interaction theories i
one can formally transform the nuclear hamiltonian H into a model-space (P)
effective hamiltonian PH.4 P, where H.q= Hy+ PV, P. The effective interaction Ve
has in general many-body components such as the one-body part Vf,}f), two-body
part V) etc. The model-space Hartree- Fock method for determining U is to choose
a U such that the condition PVIP=0is satisfied. Using a reaction matrix approxi-
mation "), this condition leads to the following set of self-consistent equations for
determining the S.p. spectrum g, : '

€ =l t 1y (&4,) (4.1)

lo(@)=2 ¥ (k;h|GM(w +¢,)|k, h) ki<ky, (4.1a)
h<kg

I (0)=0 ky> ey . (4.1b)

where 7, is the s.p. kinetic energy #°ki/2m, GM is the reaction matrix defined in
€gs. (3.3) amd (3.1), and ki is ~3 fm™! which is the momentum space boundary
of the model space P. The S.p. potential is the one-body vertex function J” evaluated
at the self-consistent energy w = g, , namely

U(kx):Fk,(Ek,)- (4.2)

A special feature of the above approach for the S.p. potential is that U(k,) is
determined self-consistently for k, < ky, and for ky > ky we set U(k,)=0. We will
use an effective mass description for the S-p- spectrum. Then the s.p. spectrum is
given as

272
: k.;.]+A ki< ky
m™*
81"1: 2.2 (43)
hok;
k1>kM.
2m

The effective mass m* and zero-point energy A are determined self-consistently, as
described below.
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It is convenient to carry out the calculation of eq. (4.1a) in the relative and
center-of-mass (RCM) frame. Similarly, we also need to calculate G™ of eq. (3.1)
in terms of the RCM momentum variables. An essential step in doing so is to replace
the projection operator Q™ of eq. (3.2) by its angle-average approximation '*) Q™
given by

,

1 in regions a, b
0 c

QM(k, K, ke, k) ={ [k*— ke +3K*1/ kK d (4.4)
[(k+3K)*—k3]/kK e
L[2k2--kf=+%K2—k§4]/kK f,

where the values of k and K for the various regions are defined in fig. 7. k and K
are related to k,, and k, by k=3(k, —k,) and K =k, +k,. The above result is
obtained from eq. (3.2) by assuming that all relative directions between k and K

are equally likely and thereby we can average over these directions.
>

kn4 |
k B! A oM
|
kM_ --------
I
M0 Dy
b
- > L 1 —-»>
2kp  2kg 2kp K kF kM Km

(i) (ii)

Fig. 7. (i) Momentum regions for the angle-averaged projection operator QM of eq. (4.4). Note that
k2 =13 (kZ+ k%) and the two curves are ellipses. (ii) The projection operator Q™ of eq. (3.2).

Using the above averaged Q™ eq. (3.1) for the model space reaction matrix can
be decomposed into separate partial wave channels. Namely for each partial wave
channel a such as the *S,->D, channel, we have

(KI|GM(w, Ka)|K'Ty = (kI| V|K'T’)

co wym\, AMy¢ 1.n nyn M e
+£J o2 giery SKIVIETI Q! K, ki, Fan KT GM(0, Ke)l'DY
T Jo I o — Hy(k"K)

(4.5)

where a stands for the partial wave quantum numbers (/I'SJT), and K the center-of-
mass momentum. For simplicity, the K and (SJT) quantum numbers associated
with the bra and ket vectors have been suppressed. For example, (kI| should in fact
be (kISJT, K|. Hy(k", K) is the unperturbed energy of the intermediate state (k”, K);
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and its determination is discussed later. We note that our convention for plane
waves is

(rlkIST) = ji(kr) sy (7) (4.6)

where j;(kr) is the spherical Bessel function, and g is the vector spherical harmonics
corresponding to I+.S = J. We also note that GM is diagonalin X and a, as indicated
by eq. (4.5). This is a consequence of using the angle averaged projection operator
QM of eq. (4.4).

Angle-average approximations ??) are also used in egs. (4.2) and (4.1a). This leads
to the familiar equation for the s.p. potential; e.g. we have for k, < kg

k

U(k))=Y (2T+1)(2J + 1){% f K2 dk GM,r(k, R,)

+7%k, : k dk[kE— k3 +4k(k, — k)]G, (K, 122)} , (4.7)
where

ko =3(ke—ky)

ki, =3(ke+k,)

Ki=4(k2+k?)

K3 =4(ki+ k%) — 2k + k, — k) (2k + k, + kg) (4.7a)

and the partial wave G™ matrix elements are given by
p g

Gissr (k, K) = (kl|GM(w, Ka)|kI) (4.7b)
with
h2k2 ﬁsz
w= - +4m* +24. (4.7¢)

In the above, we have used the effective mass description for the s.p. spectrum as
given by eq. (4.3). Now we return to the intermediate-state spectrum Hy(k", K) of
eq. (4.5). Referring to fig. 7(ii), the momentum variables k.. and k, corresponding
to k" and K may be in either region A or B. In region A, both particles have
momentum >ky,. Then according to eq. (4.3) we have for this region

+

h2kn2 h2K2
Hy(k" K)= . . (4.8)

4dm

But in regions B, we have one nucleon with momentum >ky while the other with

—
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Based on this, we have made our choice of km as stated above. Note that our choice
of Ky is different from theirs: we use a fixed ks irrespective of the ky values while
their ky, varies with kg. It is difficult to assess precisely which of these two schemes
is better. For kp~1.5fm™!, those two choices are clearly very similar to each other.
In the regions of very large and very small kr, we feel that our choice is more
reasonable. For example, if kg=0.5fm™! then kv =2ke=1.0fm™" would certainly
seem to be too small.] In fig. 9 we show a §.p. spectrum calculated from the Reid
NN interaction V). Clearly it is rather similar to the spectrum calculated using the
Paris NN interaction; the Paris spectrum being a few MeV lower. We note that the
numerical values of our model-space s.p. spectrum are in fact quite close to those
of the continuous s.p. spectrum of Mahaux and his collaborators ?), although these
two spectra employ different methods of derivation.

200
150

100

€ (MeV)

50

o

_50..

-100

Fig. 9. Same as fig. 8 except for the Reid NN interaction.

Remember that we have used an effective mass description for the s.p. spectrum
as shown in eq. (4.3). In table 1, we give our results for the effective mass m* and
the zero-point energy A for various ke values and for both the Paris and Reid NN
interactions. When plotted as a function of kg, they form rather smooth curves. It
should be pointed out that it is often not very accurate to fit our calculated spectrum
by a parabola with two parameters m* and A. (We have used a six point fit for the
momentum range O to ky, three points below ky and three above. Typical differences
between calculated and fitted spectra are ~1-2 MeV. In order to carry out calcula-
tions in the RCM coordinates, it is however necessary to use the m* and A description
for the s.p. spectrum.) As shown in the table, values of m* calculated from the two
NN potentials are quite similar to each other, but there are considerable differences
between the two sets of 4 values. To see the trend of the dependence of m* and A
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TABLE 1
Self-consistent effective mass m* and zero-point energy 4 for various
kg values, calculated with ky, =3.2 fm™" and the Paris and Reid NN
interactions
ke(fm™") m/m* 4 (MeV)
Paris 1.20 1.190 —44.55
1.30 1.234 -53.77
1.36 1.262 —59.66
1.40 1.275 —63.50
1.50 1.327 -13.71 7
1.60 1.375 —84.23
1.70 1.435 —-95.22
1.80 1.504 —106.28
Reid 1.00 1.120 —24.51
1.10 1.155 -31.09
1.20 1.196 —38.42
1.30 1.244 —46.22
1.36 1.275 *-51.06
1.40 1.289 —54.20
1.50 1.347 —62.45
1.60 1.402 —70.43
4
* % 150
Paris |
20} /4100
. - ya {3
A x
£ 4 1 =
E L N | <
7
1.5} . yd Pl 50
L m. -
i e ‘e 1
L " g
LO 1 1 1 1 1 1 1 O
1.2 1.4 1.6 1.8
ke (fm™)
Fig. 10. Dependence of m*, and 4 on k. Calculations were made with the Paris NN potential anc
ky=3.2fm™.
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on the values of kg, we plot our results for them in fig. 10 for the Paris potential.
The corresponding curves for the Reid potential are rather similar.

4.2. ANGLE-AVERAGE APPROXIMATION FOR RPA EQUATION

We now turn to the calculation of the energy shift AEG® of eq. (3.13). To do so,
we need to know the transition amplitudes Y and the model-space reaction matrix
G™. We have just described how to calculate GM in the previous sub-section. Now
we discuss how to calculate the transition amplitudes Y from the RPA-type secular
equation (3.14). :

As it stands, eq. (3.14) is not convenient for computation. It is expressed in terms
of the laboratory momentum variables; its indices (i, J- e, f) are in fact the laboratory
§.p. momenta (k;, k;, k., k;). Our plan is to use a momentum-space discretization
method **"**) to convert eq. (3.14) into a finite dimensional matrix equation. To do
this in terms of these laboratory momentum variables will lead to matrix equations
of impractically large dimensions. It may become greatly simplified if we can
transform this equation to its RCM representation. For the calculation of GM, we
have already used the angle-average approximation as discussed in sect. 4.1. Hence
G™ is diagonal in its center-of-mass momentum variable. This simplifies eq. (3.14)
slightly but is still not adequate. It seems to be indispensable that we also have to
make an angle-average approximation for the occupation factor (n;n;— nn)=1-
(ni+n;) of eq. (3.14).

We define a function Qr(ki, ki) =1—(n;+ n)=1or -1 depending on the values
of k; and k;. This is seen clearly in fig. 11(i) where Qg is equal to 1 in regions A
and B (i and j are both particles) and —1 in region C (i and j are both holes). Qg
is equal to zero for all other regions. The values of Qr(k, K) clearly depends on

(ii)
Fig. 11. Regions for the occupation factor Q (k;, k)=1 —n;—n; and its angle-average approximation
Qr(k, K, kg, k). In (ii) the lines are (k—1K) = +ky and k+3 K = ke and ky,. The curves are ellipses.
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&thg AeAmgle between k and K. Assuming that all values for this angle are equally likely,
we can replace Qxr(k; K) by its angle-average approximation Or(k, K, kg, ky). With
the help of fig. 11(i), the values of Qg are obtained as

(—1 region 1
—|x)] 2
Onll K ke, k) =1 | 3 (49)
|| 4
|2 5
\min (|x,], |x|) 6
where
x = (ki—k*—5K?)/kK,
(4.9a)

x,= (ki —kK*-5K?)/kK.

The regions 1 to 6 of eq. (4.9) refer to the regions in the (k, K) plane shown in fig.
11(ii).

The replacement of Qg by its angle-average approximation Qk greatly simplifies
eq. (3.14); it can now be decomposed into separate partial-wave equations. Namely,
it becomes for partial wave channel «

D J dk'’ {ekkﬁ(k —k") 8+ A 2K” Qr (k, k){Kl|L(w, K)|k'l')} Y. (k'l'k, A)

r 77'
= pm(@, A) Yo (KIK, X)), (4.10)

where Qgr(k, K) is an abbreviation for Or(k, K, kg, ky) of eq. (4.9). ik is the
unperturbed energy hk*/m*+#*K?/4m*+2A. The wave function (k) stands for
the RCM partial wave function (kISJT, K) and similarly for (k',I'), as explained
in sect. 4.1. Clearly, eq. (4.10) is to be solved together with the self-consistent
condition (3.14a), giving the self-consistent solution w,,(A). We emphasize that eq.
(4.10) is much simpler for calculation than eq. (3.14), and this is made possible by
the introduction of the angle-average approximation for 1—(n;+n;). This enables
us to solve eq. (3.14) separately for each partial wave channels, such as the *S,-’D,
channel. It should be pointed out that this approximation is quire similar to the
angle-average approximations for the Pauli exclusion operators and potential energy

calculations which have been used in almost all existing nuclear matter calcula-
1—4,22,25)

tions.

We now turn to the vertex function L(w, K) of eq. (4.10), which is a standard
equation for determining the poles and residues of the particle-particle Green
functions '>%°). L is the irreducible vertex function which has, in general, both
two-body and one-body terms. For simplicity, we included in eq. (3.14b) only a
two-body term, G™, in L. The following consideration is important. As shown by
eqs. (3.15) and (3.16), the normalization constant Z,, for the Y,, amplitudes depend




H.Q. Song et al. / Infinite order summation 513

on the energy derivatives of the self-consistent energy u,. Hence, Z,, in fact depends
on the energy derivative dL/dw. As described in sect. 4.1, we have introduced a
S-p- potential U defined by the self-energy vertex function I" (see egs. (4.1) to (4.2)).
Thus the one-body vertex functions have already entered our calculations. Therefore
our L is in fact

(JIL(w)lef) = Gier+ 8, 8, {Si(w) + S; (w,)} (4.11)
with the one-body vertex function given as
Si(w1) =T (w,) - U(i) (4.11a)

and similarly for S;(w,). It is readily seen that w; = — g and w, = w — ;. For clarity,
the above equations are expressed in the laboratory frame where the indices Ljy...
stand for the laboratory momenta ki, k;, . ... Note that our choice of U, as discussed
in sect. 4.1, is to make S;(w = £)=0 (and Sj(w = g;)=0). This certainly does not
imply at all that S;(w,) = S;(w;)=0and dS;(w,)/dw = dSj(w,;)/dw =0. In fact these
energy derivatives will be rather large and will play an important role in determining
Z,. With L(w) given by eq. (4.11), the ring diagrams included in our nuclear matter
calculations are in fact of the general structure shown in fig. 12.

Fig. 12. A general sign diagram included in our nuclear matter calculations. The vertex function L(w)
is given by eq. (4.11).

As discussed earlier, in our calculations we need the RCM matrix elements
(kl|L(w, K)|k'I'). For given RCM momenta k and K, the angle-averaged values for
k? and k} being both particles (regions A and B of fig. 11(i)) or both holes (region
C of fig. 11(i)) can be readily found. Namely both are given by (k*+1K?). 1t has
been necessary at several stages of our calculations to use the angle-average approxi-
mations. The same is also true for treating S; and S; of eq. (4.11). Thus the matrix
element of L(w, K) of eq. (4.10) is obtained as

(kl| L(w, K)|k'l'"y = (kl| GM(w, Ka)lk'ly+2808u{ I (0 — eg) — U(ky)},
(4.12)

where G™ has been given by eq. (3.3), and I" and U have been given by egs. (4.1)
to (4.2). Recall that k2= k*+1K> :

——
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We now proceed to solve egs. (4.10) and (4.12). First, we recall that they are t
be solved together with the self-consistent condition (3.14a), i.e. pp(w,A)=w:
o, (A). It is certainly numerically possible to carry out such self-consistent solution
by way of graphical methods. In so doing, one needs a rather large amount 0
computer time. It is more convenient, as well as physically more meaningful, t
carry out the following perturbative solution. We have found that the dependenc
of GM on w is quite weak for  in the vicinity of w},. (Note that only w,, and th
corresponding Y,, amplitudes enter in our calculation of AE}P, as shown by ec
(3.13).) Thus the dependence of L(w, K) on w comes almost entirely from that o
It (w). Asis well known, —dI"/dw is closely related to the two-body wound integr?
x@ whose values are ~0.10.

Let us first calculate dI"/dw. From egs. (4.1a) and (3.1) we have

M\ 2
ir,(,(w)=-% Y <k.kh|GM<Q—) GMk,ky) , (4.1

dw ky, < ky: e

where G™ and e are both dependent on o, i.e. GM=G"(w+eg,) and e
(w+ €,) — Hy (see eqs. (4.8) and (4.8a) for H,). At the self-consistent energy w = ¢
we have k'®(k,) =—(d/dw)I,(w) which is the familiar two-body wound integr:
Using angle average approximations quite similar to those used for the derivatic
of U(k,) of eq. (4.7), we obtain from eq. (4.13)

d
K(Z)(kl, w)=s ——— Fk.(w)
dw

=% T (2T+1)2J +1) J K dk(kalG(Q> G(K,)|ka)

0 e

1
+2—Z- Y (Q2T+1)(2J+1)

1 o

xJ *dk[ké—k%+4k(kl—k)]k<ka|G(§) G(Ky)lke), (41

k_

where k., K, and K, have been given in eq. (4.7a). The matrix elements
G(Q/e)*G(K) are abbreviations for

Q\’ o2 (% GM(k',K)(k't'|GM(w,ka)|kz>}2
(ka|G<e) G(k)lka)—; - L k dk{ (K ,

(4.
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where Q™ is the QM(k, K, kg, ky;) of €q. (4.4) and H, has been given by egs. (4.8)
and (4.8a). Recall that & stands for the quantum numbers (I'SJT) and (kl) represents
(kISJT, K).

In fig. 13, we present some representative values of x?(k,, w). As shown, they
are generally rather small. (This is mainly because we have used a model space with
knm=3.2fm™.) We have found that k® generally varies rather slowly with » and
k, in the energy and momentum regions important for our present calculation.
Consequently, dI'/dw has the same behavior and it should be a good approximation
to solve egs. (4.10), (4.12) and (3.14) with their w-dependent terms treated by first
order perturbation theory*, as is done in the present calculation. :

4.3. NUCLEAR MATTER BINDING ENERGIES

Having calculated the reaction matrix G and the transition amplitudes Y in the
previous two subsections, we are now ready to calculate the energy shift AEE” of
€q. (3.13). Using angle-average approximations similar to those used in the derivation
of eqs. (4.4) and (4.9), we can express AEL” as

AEgP
A

1 2ky,
=%z(21+1)(2r+1) d)«f K?’dK Yy
o kF [+3 0 0

m I’
ke Ky
X f k* dk J k” dk’'

0 0
X Yo (kIK, A)*(KI|G™(w,,()), Ka)|k'T) Y. (K'I'K, X), (4.16)

which is the potential energy per nucleon (PE/A) of nuclear matter. Let us briefly

4
Paris 40.10
kg =13 fm™ )
1 K
kp
2.90
—————————— oi0o 1005
K
P ] 5
. 00
~Cl00 -80 60 -40 20 0
w (MeV)

Fig. 13. Variation of k®(k;, w) with k, and w, calculated with ky= 1.3 fm~"' and the Paris NN interaction.
kv =3.2fm™" is used.

* Briefly speaking, we consider [Hy+ A(w)]¢(0) = E(w)¢(w) with = E(w). Hy is w-independent.
We first solve [ Hy+ A(w,)]1do = Ey by, and then treat (v —wo) dA/dw by first order perturbation theory
(for w not very far away from w,.) This gives, for example, E(w)=~ Eo+ (w0 — wo)(do| dA/dw|py).
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explain the above. o denotes the partial wave quantum numbers (/I'SJT). For each
a, A and K we solve the secular equation (4.10) to obtain w;,(A) and Y, (..., A).
Recall that, as shown by eq. (3.13), AEE” was originally expressed in terms of the
laboratory frame momentum variables (k;, k;) and (ky, k;). We have now transformed
it to the RCM frame with momentum variables k, k' and K. This is made possible
by replacing the occupation factor (;A; — n;n;) by its angle-average approximation
Ox of eq. (4.9) in the derivation of the RPA type seculation equation (4.10). Thus
the amplitudes Y’s are already angle averaged, and therefore in eq. (4.16) the upper
integration limits for k and K are respectively ky and 2ky. We note that the Y’s
are normalized to Z2, according to eq. (3.15) which is expressed in terms of the
laboratory momentum variables. In actual calculations this equation is transformed
into the RCM frame also with the approximation that the occupation factor (a;n; —
n;n;) is replaced by its angle average Qx. Clearly, the binding energy per nucleon
(BE/A) is given by —BE/A=3#"ky/10m+AEg®/ A.

The integrations in eq. (4.16) are carried out numerically using gaussian mesh
points and weights. We have found that satisfactory accufacy is obtained when
using approximately (3, 3, 30) mesh points for the (A, K, k) integrations, respectively.
It is interesting to note that when setting A =1 (i.e. 5:, dA is removed), ky = kg, and
L=0in eq. (4.10), eq. (4.16) becomes the usual BHF formula for calculating PE/ A.
We have used this limit for performing BHF nuclear matter calculations and obtained
results in very good agreement with results of other BHF calculations*. This serves
as a check of our computer programs. Note that when L is set to 0 in eq. (4.10),
the amplitudes Y,, reduce to their respective unperturbed values (i.e. the true wave
functions ¥ 2 and ¥¢ in eq. (2.12d) are replaced by the respective unperturbed
wave functions @272 and @¢').

In figs. 14 and 15 we show the results of our nuclear matter BE/A calculations
as a function of kg (or density p =2k3/3?) for both the Paris and the Reid NN
interactions. The curves labelled RING are our ring diagram calculations outlined
by eq. (4.16). The results from BHF calculations, labelled BHF, are also given for
comparison. Let us discuss fig. 14 first. Clearly, the RING calculations give an
additional binding energy of about 4 MeV per nucleon, as compared with the BHF
result. This gain in binding energy is perhaps attributable, to a large extent, to the
use of a “continuous” s.p. spectrum which has an attractive potential energy in the
momentum region kg to ky. Ma et al.'™"?) have carried out model-space BHF
(MBHF) nuclear matter calculations which are essentially BHF calculations using
a “continuous” s.p. spectrum for momentum k< ky. They have found that MBHF
nuclear matter calculations using the Paris NN interaction gives an additional BE/ A
of about 4 MeV compared with the corresponding BHF calculations. Lejeune,

" Mattzolff and Grange *’) have performed BHF nuclear matter calculations using

the Paris NN interactions aa’qg/ﬁgfggtir_)pqqs’ s.p. spectrum. Their results and those
of Ma et al. are in fact in very good agreement with each other; their calculations

- e -

* We have compared our BHF results with those of refs. 10.13y ysing the Paris and Reid potentials, of
ref. 22) using the Reid potential, and of Day and Wiringa’s calculation ) using the Paris potential.
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@ Fig. 14. Results of ring diagram nuclear matter calculations (RING) obtained with eq. (4.16), ky =

3.2fm™, and the Paris NN interaction. Results for the BHF calculations are also shown (BHF). The
arrows indicate the saturation Fermi momenta. The box indicates the empirical nuclear matter properties. i
The curves labelled BB and MBHF are respectively Day and Wiringa’s *®) and Kuo, Ma and Vinh 5

Mau’s '°) results. See text for further explanation. j
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Fig. 15. Same as fig. 14 except for the Reid NN interaction,

using a continuous s.p. spectrum give an additional BE/ A of about 4 MeV compared
with those using a conventional discontinuous S.p. spectrum. Similar calculations
have also been carried out by Dey and Matin **). They have, however, found that ;
the gain in BE/A due to the.use.of a continugus s.p. spectrum is about 7 MeV. All

e

4
1




these calculatlons mdlcate that the use of “‘continuous’ s.p. spectrum of the form'
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shown in fig. 8 is very likely to give an extra BE/A of several MeV compared with

~-.the_case of using a conventional discontinuous. BHF s.p. spectrum.

Day and Wiringa 26) have performed both variational and Brueckner—Bethe calcu-
lations of nuclear matter using the Paris potential. The latter included two-, three-
and four-hole line contributions. They have found that the results given by these
two approaches generally agree with each other rather well. In fig. 14, we include
their Brueckner-Bethe result (labelled BB) for comparison. As shown, their binding
energy agrees with our RING result rather well, but their saturation density is
significantly higher. Kuo, Ma and Vinh Mau 19) have performed model-space Brueck-
ner Hartree-Fock calculations of nuclear matter using the Paris potential. Their
results (labelled MBHF) are also included in fig. 14 for comparison.
ting feature of fig. 14 is therefore not thatw RING calculations,
glve satlsfactow 1 ‘/-AA It is, instead, that they give: tather satlsfactory saturatlon
'densxty Most hkely, this is due to the inclusion of the partlc]e particle ring diagrams
to all orders in our calculations. Let us trace our calculatlons The potential energy
per nucleon of our calculations i is evaluated aeedrdlng to eq. '(4.16). Let us decompose
AE®P/ A of this equation into its A-integrands for each partial waves:

AEPP

—ZAE ZJ drI,(A). (4.17)

We show in table 2 a set of typical values for I, (A) and AE,. For most partial wave
channels, I, (A) does not vary much from A =0to A = 1. But for the 33,-*D, channel,
we notice that there is a large change of I,(A); it changes from —12.7 to —29.9
when A changes from ~0.11 to ~0.89. It is easily seen that A =0 corresponds to
the case in which only terms of first order in GM are included in AEEP of eq. (4.16).
Hence we have the rather interesting and important observation that it is the 3S,-’D,
channel where the effect of ring diagrams is most pronounced. Since it is this channel
where the NN tensor interaction is most important, it may be inferred from our

calculations that the.impertanee of the ring diagram correlations. is closely r related

to the NN tensor mteractlon_ =

) mdlcate that the effect of the ring diagrams is rather sensmve to_

s SO

to it, we “see that the rmg dnagrams give a considerably larger gain in BE/ A for low
density than for high density. Thus the inclusion of the ring dlagrams shifts the

saturation to a lower value (ke=1. 4fm™" as shown by the figure). Let us investigate
this po.;nmt'more closely.

In fig. 16 we show the contributions to PE/A from the S ,-°D, partial wave
channels for various kr values. For the Paris NN interaction, the ring diagram
calculations are represented by curves 1 and the BHF calculation by curves 2. For

the Reid NN interaction, the former are represented by curves 3 and the latter by
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TABLE 2
A decomposition of AEPP/ A of eq. (4.16)

; a 0.1127 0.5000 0.8873 fodA..
'S, -16.762 -16.974 -17.212 -16.981
‘ *S,-’D, -12.719 -20.708 —29.867 -21.033
; ', 4.922 4.543 4.229 4.562
) P, -3.767 -3.749 -3.726 —3.748
p, 11.972 10.726 9.755 10.802
3P2-3F‘? —8.527 -8.980 —9.49] —8.996
'D, —-3.187 -3.133 -3.085 -3.135
D, —4.607 —-4602 —4.632 —4.612
*D;-G, 0.483 0.287 0.102 0.290
'F; 0.980 0.949 0.920 0.950 _
°F, 1.857 -« 1.801 1.748 1.802
3F,-*H, —0.625 ~0.622 -0.618 -0.622 f
'G, —0.567 —0.552 -0.538 —0.553 ;
3G, | —-0.878 —0.858 —-0.839 —0.858 : ,
3Gyl 0.143 0.134 0.125 0.134 i
L>4 0.309 ' 4
PE/A ~41.688
KE/A 24.384
BE/A -17.304

curves 4. Consider the 3S,-3Dl channel first, and we note that in this: channel the

. NN tensor interaction plays an important rofe. It is well known that the intermediate- o #
S j
!

states induced by the NN tensor interaction are mainly of moderately high excitation
energy (~300 MeV) [ref. °)]/AT high densitics, these intermediate states are to a
arge extent blocked (because kg is large). At lower densities, these states are ‘
relatively empty. Thus if the ring diagrams are induced mainly by the NN tensor :
interaction, then we expect their effect to be more pronounced at low densities than i ;
at high densities.‘This conjecture is clearly supported by our results, as shown by "
the 3S,->D, curves of fig. 16. Here curves 1 and 2 are rather close to each other at
ke~1.6 fm™, but at ke~1.2 fm™' curve 1 becomes considerably lower. Similar
behavior is also observed for curves 3 and 4. ,
Turning to the 'S, curves of fig. 16, we see that curves (1,3) are respectively
higher than curves (2, 4) in the region of high densities. This suggests that the effect
of the short-rangej: repulsion of the NN interaction is also enhanced by the ring
diagrams. (This enhancement is also evident for the ’S,-’D, curves of fig. 16.) That
the difference between curves 3 and 4 is larger than the difference between 1 and
2 is perhaps a reflection that the Reid NN interaction has a stronger short-range
repulsion than the Paris NN interaction. ‘

R
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Q‘ Fig. 16. Contributions to the potential energy per nucleon (PE/A) from the 'S, and 38,-3D, channels,
for the Paris and Reid NN interactions. Calculations including ring diagrams are denoted by “RING”,
and the BHF calculations are denoted by “BHF”.

Let us now go back to fig. 15 where nuclear matter saturation curves calculated
with the Reid NN interaction are shown. The BHF calculation gives BE/A ~9.5 MeV
with a saturation Fermi momentum kg~ 1.36 fm™!. Just like the case with the Paris
NN interaction of fig. 14, the ring diagrams shift the saturation density to a much
lower value (kg~1.30fm™'). It is interesting to note that this ke is in fact lower
than the empirical value of kg~ 1.35fm™".

In figs. 17a and b, we give the major partial wave contributions to PE/ A of our
ring diagram nuclear matter calculations using the Paris NN interaction. In figs. .
17¢ and d the corresponding contributions are given for the Reid NN interaction.
It is interesting to note that only the *S,-*D, curves depict a saturation hehavior l
The overall nuclear matter saturation is governed by a delicate balance among these
P ributions and the kineti i arious ke values.JWe note that the'
PE/A curves for the 'S,, *S,-’D,, 'P; and 3P, of the Reid NN interaction are all

significantly different from those of the Paris NN interaction.

g The normalization condition of the Y-amplitudes, as given by egs. (3.15) and

(3.16), has played an important role in our nuclear matter calculations. As shown
by eq. (4.16), AE§®/ A depends directly upon the Y-amplitudes, and the overall
| magnitudes of Y depend on the normalization cons“tant Z,, of egs. (3.15) and (3.16).
From our discussion in sect. 4.2, it is easy to see that ‘Z » of eq.(3.16) is approximately
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Fig. 17. Partial wave contributions to the potential energy per nucleon (PE/A) in our ring diagram &

nuclear matter calculations for the Paris (a,b) and Reid (c,d) NN interactions. knvg=3.2fm™! is used.

equal to (1+2«®)™" for A =0 and 1 for A =0, where typical values of x® have
been given in fig. 13. Note that A is integrated from 0 to 1 as indicated by eq. (4.16). ¥
As expected, we have found that «? generally increases with kp. Namely, at higher
kg (i.e. higher density) k® becomes larger and, consequently, Z becomes smaller
in general. Hence in eq. (4.16) the magnitudes of the Y-amplitudes become generally
smaller, by a rather significant factor, as ky increases. This has been an important

factor in determining the saturation density of our nuclear matter calculations.
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From the saturation curves of figs. 14 and 15, we have deduced the incompressibil-
ity coefficients
m

K=k§—‘3—<—B—E). (4.18)

dk} A

They are 96.3 and 110.7 MeV for our ring diagram calculations using, respectively,
the Paris and Reid NN potentials. Again, both the ring diagrams and the tensor
force have played important roles in determining their values. We note that our
value for the Reid case is in good agreement with the value recently suggested by
Brown and Osnes ®).

Finally, let us discuss an essential feature of our present nuclear matter theory.
Our calculation is based on eq. (4.16), and to carry out its calculation we must first
solve the RPA equation (4.10). Clearly this equation involves a non-Hermitian
matrix and consequently its energy solutions may become complex. When this takes
place, AE® of eq. (4.16) becomes generally complex and consequently nuclear
matter becomes unstable. We have indeed found such coinplex solutions at kg=
1.2fm™" for the Paris potential case (fig. 14) and at kz=1.0fm™' for the Reid
potential case (fig. 15). (No complex solutions are found for all the other points of
the RING curves of figs. 14 and 15.) Hence our calculation predicts nuclear matter
instability at the above two situations. In the present work we have simply discarded
the complex solutions of eq. (4.10), and the kg= 1.0 point of fig. 15 are obtained
in this way. Nuclear matter instability is an important problem. °) It appears that
our ring-diagram nuclear matter theory may provide a useful tool for studying this
problem. We plan to carry out a more thorough investigation of the instability
situation associated with complex solutions of eq. (4.10) in a future publication.

5. Discussion and conclusion

We have developed a new method for summing up the particle-particle ring
diagrams of nuclear matter to all orders. This type of ring diagrams has not been
investigated before. A desirable feature of our method is its relative simplicity for
making calculations. One first chooses a model space, and calculates the model
space reaction matrix G" and s.p. spectrum. Using these, one solves a RPA-type
secular equation to obtain the Y transition amplitudes. Then the potential energy
of nuclear matter is given by simple integrals of the product YY" GM.

Using the Paris and Reid NN potentials, we have applied the above method to
nuclear matter calculations. The effects of the particle-particle ring diagrams are
found to be rather important. Compared to the results of conventional BHF nuclear
matter calculations, our calculations with the inclusion of the ring diagrams give a
larger binding energy per nucleon as well as a smaller saturation density. It should
be emphasized that we use a model-space ép spectrum which has self-energy
insertions to particle lines (with momentum kg < k < ky). This enhances the effect



|

*_the present calculation and should be furtherTnvestigatecL_‘
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of our ring diagrams as compared with the case where ring diagrams are calculated

‘using a conventi‘onal discontinuous BHF s.p. spectrum.

Our calculations indicate that the ring diagrams are particularly important for

7| the treatment of the NN tensor force. With these diagrams included, the NN tensor
force has the clear tendency to make nuclear matter saturate at lower densities (as

compared with nuclear matter calculations without the inclusion of the ring
diagrams). This is a rather interesting result; it enables our nuclear matter result to
move laterally away from the well-known Coester band ®). In fact our calculated |
binding energy per nucleon and saturation density of nuclear matter, for both the tﬁ
Paris and Reid NN potentials, are both in rather satisfactory agreement with the
corresponding empirical values as shown in figs. 14 and 15.

Our calculations can still be improved upon in several areas. Consequently, we
do not want to emphasize the above good agreement between our results and the
empirical nuclear matter properties. Instead, we wish to emphasize the trend pro-
vided by the inclusion of our ring diagrams in lowering the nuclear matter saturation
densities. Shakin and his collaborators ') have pointed out that relativistic correc-
tions are very important in lowering the nuclear matter saturation densities. Our
calculations do not include relativistic corrections, yet our results have shown that
the inclusion of our ring diagrams seems to have a rather strong effect in lowering
the nuclear matter saturation density. This raises the intriguing possibility that the
calculated nuclear matter saturation density may become too low if ring diagrams
and relativistic corrections are both included. Further study in this direction is
'certain]y needed. In fact, we are planning to carry out a ring diagram nuclear matter
calculation with the inclusion of relativistic effects. Several authors >*'%) have
suggested the need of three-body effective interactions in lowering the calculated
nuclear matter saturation density. Our calculations indicate that this need may be
reduced by the inclusion of the ring diagrams.

We now discuss several aspects where the present calculation can be improved
upon and where further investigations are needed. First, an important step of our
calculation is the éhoice of ky, the momentum space boundary of our model space.
_V&?have used kyy=3.2fm . Our results clearly depend on the choice of ky. Ma
and Kuo '®) have investigated the dependence of their MBHF calculations on the
choice of ky, and found that the dependence of their results on kv was rather
smooth. (They found a local minimum for BE/A at ky,~2kg.) Their calculations
did not include the ring diagrams. Using their results as a guide line, we have used
kv =3.2 fm™" in our present calculation. Limitations in computer time has prevented
us from carrying out the present calculation using a series of different k,, values.
This should be done in the future. In short, the choice of k,, is an uncertainty in

————

Next, we turn to the angle-average approximations. As is well known, these
approximations are standard (and indispensible) in treating the Pauli exclusion
operators in the usual BHF nuclear matter calculations and are generally considered

|
|
|
|

i
&
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to be fairly accurate *). We have now generalized them to the treatment of the
particle-particle RPA secular equations. This is done primarily because by doing

so different partial waves are decoupled. Thus the calculation is greatly simplified.
Although the approximations used in the RPA equations are very similar to those
used in treating the Pauli operators in BHF calculations and we may expect them
to have similar accuracies, it should still be very desirable to actually check the
accuracy of the former. This may be done for restricted cases by solving the RPA
equations directly in the laboratory frame by way of a vector-bracket transformation
method 3°), and comparing the results so obtained with those obtained with the
angle-average approximations.
@  Finally, we come to_the particle-hole ring diagrams. As mentioned earlier, the
YHK ring diagram method is applicable to the summation of the particle-hole ring
diagrams. But their numerical ¢ ion is dctiially more complicated than the
‘particle-particle ring diagrams. This is because to calculate the particle-hole matrix
element we WWWWM@
the particle-particle channels=Fhus the various partial wave channels of the particle-
particle interactions are generally coupled. The representation advocated by Dickofi,
Faessler and Miither*!) and by Miither **) appears to be a convenient way for
studying the particle-hole ring diagrams. In fact they have calculated the particle-
hole ring diagrams in nuclear matter using the Reid NN potential. There are,
however, differences between their calculations and what we would like to calculate
within the present framework.
As indicated in fig. 1, diagram (8) is a third order particle-hole ring diagram.
Di‘;gram (B) may be treated as either a second-order particle-particle as a
second-order particle-hole ring diagram. We have used the former scheme and
included diagram (B) in AE§P. Thus, as discussed in ref.'®), the lowest order
particle-hole ring diagram in AER" - the potential energy contribution from the
particle-hole ring diagrams - is third order in G™. In contrast, the particle-hole
ring diagrams of refs. >*?) and of Day’s calculation 33) begin with diagrams second
order in the reaction matrix. There are indications that the particle-hole ring series
converge rather rapidly and may not be very important for nuclear matter binding
energy calculations2221%2). Hence we expect that our AEB" would be considerably
less important than our AESP. This behavior has in fact been observed in some
Lipkin model calculations **) and preliminary G-matrix calculations of the binding
—p> energy of 160 [ref.>*)]. Whether the above expectation will be realized ot not for
| nuclear matter remains 1o be investigated. Hence it will be worthwhile and interesting
{to actually calculate AES" for nuclear matter based on the framework of the present
work and ref. '%). Two further differences between AEE" so calculated and earlier
_particle-hole ring diagram calculations *>'~*) are worth noting. Firsp we employ a
model-space approach which employs a self-consistent particle (kg <k < ky) spec-
trum whereas the earlier calculations employed a conventional BHF s.p. spectra.
| , our method for summing up the particle-hole ring diagrams will be similar




H.Q. Song et al. / Infinite order summation 525

to that given by eq. (3.13), and it will be considerably different from the methods
used in earlier calculations. It will be of interest to investigate the effect of these
differences on the role the particle-hole ring diagrams play in nuclear matter
calculations.
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