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We perform ab initio calculations for nuclei around 16O, 40Ca, and 56Ni using realistic nucleon-nucleon

forces. In particular, 56Ni is computed as the heaviest nucleus in this kind of ab initio calculation. Ground-

state and single-particle energies including three-body-cluster effects are obtained within the framework

of the unitary-model-operator approach. It is shown that the CD-Bonn nucleon-nucleon potential gives

quite good results close to the experimental values for all nuclei in the present work.
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One of the most fundamental problems in nuclear phys-
ics is to describe and understand nuclear properties from
the underlying nuclear forces. To solve this problem, a
realistic nucleon-nucleon (NN) interaction [1], which has
a strong repulsive core and a complicated spin-isospin
structure, has been employed [2]. In addition, to obtain
more quantitative results, a three-nucleon (NNN) inter-
action [3,4] has been used in some cases. Light nuclei
with a mass number up to A ’ 12 have been well under-
stood from the ab initio calculations employing the real-
istic NN and NNN interactions with the Green’s function
Monte Carlo (GFMC) method [4,5] and the no-core shell
model (NCSM) [6,7]. While these methods have been
successful in the light nuclei, their applications to heavier
systems become rather difficult due to the exponential
increase in the computer performance needed.

Coupled-cluster (CC) theory or, in other words, the eS

(or eT) method [8,9] is promising for microscopic calcu-
lations of heavy nuclei. Recently, the first calculations for
nuclei up to the pf-shell region, 48Ca and 48Ni, have been
reported with a CC method including the excitations of the
singles and doubles which is referred to as CCSD [10].
Well-converged results in a sufficiently large model space
have been obtained using a chiral N3LO NN interaction
[11] as one of the realistic NN forces. While the CCSD
calculations give results fairly close to the experimental
values, there still remain some discrepancies between the
results and experiments. One of the reasons for the dis-
crepancies may be attributed to the missing NNN interac-
tion in the calculation. Although the NNN force has been
considered to be an indispensable ingredient for a more
quantitative description of the nuclear properties, there has
been no definite way of using theNNN force directly in the
calculation for the heavier nuclei.

Given this situation, it is still worthy to compute nuclear
properties using only the realistic NN interaction in a
rigorous way and to investigate to what extent nuclei can
be described with only theNN force. Such a study could be

helpful to evaluate the magnitude of the NNN-force effect
in heavier nuclei in future works.
In this Letter, we report the results of calculated ground-

state energies and single-particle ones for hole states in
nuclei around 16O, 40Ca, and 56Ni with the unitary-model-
operator approach (UMOA) [12–14]. The calculation for
56Ni, which is a typical pf-shell nucleus, is performed for
the first time within the UMOA framework. Furthermore,
56Ni is the heaviest nucleus for which this kind of ab initio
calculation has been performed. In the UMOA, a
Hermitian effective interaction is derived through a unitary
transformation [15,16]. The unitary transformation method
has been widely used in other microscopic methods in
nuclear physics, such as the NCSM [6,7] and the hyper-
spherical harmonics effective interaction method (EIHH)
[17]. The unitary transformation treats successfully short-
range correlations due to the strong repulsive core of the
NN force in a truncated model space, but the model space
should be sufficiently large in the sense of the ab initio
calculation.
In the UMOA, a unitarily transformed Hamiltonian ~H of

the original many-body Hamiltonian H is given in a

cluster-expansion form as ~H ¼ e�SHeS ¼ ~Hð1Þ þ ~Hð2Þ þ
~Hð3Þ þ . . . , where S is a two-body anti-Hermitian operator
and is determined by solving a decoupling equation be-

tween the model space and its compliment [18]. The ~Hð1Þ,
~Hð2Þ, and ~Hð3Þ are the one-, two-, and three-body cluster
(3BC) terms, respectively. The method of the actual cal-
culation and the results of nuclei around 16O including up
to the two-body cluster terms using modern NN forces
have been given in detail in our previous study [14]. In the
present work, we apply this method to the heavier nuclei up
to 56Ni and evaluate effects of the 3BC terms systemati-
cally. As for the evaluation of the 3BC terms, we follow the
prescription given in Refs. [12,13].
In Fig. 1, we first demonstrate @� and �1 dependences

of the calculated ground-state energies of 16O including the
3BC effects. Here, @� is the harmonic-oscillator (HO)
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energy of the single-particle basis states. The �1 stands for
a boundary number defined with a set of the HO quantum
numbers fn1; l1g and fn2; l2g of the two-body states as �1 ¼
2n1 þ l1 þ 2n2 þ l2, and specifies the size of the model
space of the two-body states. The Nijm-I [19], the CD-
Bonn [20], and the chiral N3LO [11] NN forces are em-
ployed as the realisticNN interactions. The Coulomb force
is added to the proton-proton channel. It is seen that well-
converged results with respect to the boundary number �1

are obtained at �1 ¼ 18 and 14 for the Nijm-I and the CD-
Bonn interactions, respectively. For the N3LO interaction,
the convergence property is rather different from the other
two forces. For example, at @� ¼ 15 MeV, it is difficult to
search for convergence up to �1 ¼ 14. However, for the
larger values of �1, the results rapidly converge toward the
point at �1 ¼ 20.

In Table I, we tabulate the energies of the one- and two-

body cluster terms Eð1þ2BCÞ, the 3BC terms Eð3BCÞ, and the
total ground-state energy Eg:s: of

16O. The binding energy

per nucleon BE=A ¼ �Eg:s:=A is also given. The values of

@� ¼ 14 MeV and �1 ¼ 18 for Nijm I, @� ¼ 15 MeV
and �1 ¼ 14 for CD Bonn, and @� ¼ 15 MeV and �1 ¼
20 for N3LO are shown as the optimal ones. It is seen that,
although the 3BC terms have attractive and sizable con-

tributions to the ground-state energy, the calculated
ground-state energies are still less bound than the experi-
mental value. In the present calculation, a genuine NNN
force is not taken into account. The inclusion of the NNN
force could compensate for the discrepancies between the
theoretical and experimental values, which has been shown
in the microscopic studies of light nuclei [4,22]. Note,
however, that the energies of 93.6% to the experimental
value are attained from only theNN force for the CD-Bonn
and the N3LO potentials, though 84.4% for the Nijm-I
interaction.
The 3BC effect for N3LO is significantly larger than the

ones for Nijm I and CD Bonn. A similar tendency is seen in
the recent �CCSDðTÞ computation including triples cor-
rections [23]. We have found that the large 3BC contribu-
tion also applies to the other nuclei in the present study.
Owing to this property, we have not yet obtained the
converged results for the other nuclei. For this reason, we
do not show the other results for N3LO. One may also

notice that the result of Eð1þ2BCÞ for N3LO shows a large
difference of about 4 MeV from that in our previous study

[14]. This is due to strong dependences of Eð1þ2BCÞ and
Eð3BCÞ on @� and �1 for N

3LO.
In Fig. 2, we illustrate the @� and �1 dependences of the

total energy Eð¼ �BEÞ including the 3BC effects of the
lowest 1=2� and 3=2� states of the spin-orbit doublet in
15O. These states are representative single-hole states of
neutron in 15O. For Nijm I, we take the values of @� ¼ 14
and 13 MeV at �1 ¼ 18 for the 1=2� and 3=2� states,
respectively, as the optimal ones, and for CD Bonn, @� ¼
15 and 14 MeV at �1 ¼ 14. These optimal values are
tabulated in Table II. The results for the proton-hole states
in 15N are also given. The convergence properties for 15N
are similar to the case of 15O.
The microscopic description of the spin-orbit splitting in

nuclei is a long-standing problem. In Table II, the spin-
orbit splitting is denoted by Es:o: which is the difference of
the binding energies between the 1=2� and 3=2� states.
Our results show smaller splitting energies than the experi-
mental values for these hole states, which does not contra-
dict previous studies [24,25]. We should note, however,
that the magnitude of the lack of the splitting energy

TABLE I. The calculated energies of the one- and two-body
cluster terms Eð1þ2BCÞ, the 3BC terms Eð3BCÞ, and the total
ground-state energy Eg:s: of

16O. The experimental value is taken

from Ref. [21]. All energies are in MeV.

Nijm I CD Bonn N3LO Expt.

16O Eð1þ2BCÞ �103:72 �115:58 �105:92
Eð3BCÞ �4:02 �3:82 �13:57
Eg:s: �107:74 �119:39 �119:48 �127:62
BE=A 6.73 7.46 7.47 7.98

12 14 16
−95

−90

−85

−80

ρ1

12

14

16
18

(M
eV

)

(MeV)

E

hΩ

O15Nijm I

1/2−

3/2−

12 14 16 18

−100

−95

−90

ρ1

10

12

14

(M
eV

)

(MeV)

E

hΩ

O15CD Bonn

1/2−

3/2−

FIG. 2 (color online). The @� and �1 dependences of the
calculated energies Eð¼ �BEÞ of the lowest 1=2� and 3=2�
states of the spin-orbit doublet in 15O.
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FIG. 1 (color online). The @� and �1 dependences of the
calculated ground-state energies Eg:s: of

16O.
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depends considerably on the interactions employed. For
CD Bonn, the differences are only 0.34 and 0.48 MeV for
15O and 15N, respectively. The calculation including the
NNN force could give a better result as shown in
Refs. [24,25].

The energy difference of the ground states between 15O
and 15N is denoted by Ediff in Table II. Our results are in
good agreement with the experiment. Similar tendency has
been found in the case of 3He and 3H in our previous work
[14]. Since we include the Coulomb force, the small dif-
ferences between the results and experiment may be attrib-
uted to the effects of the charge-independence breaking of
the original NN forces.

In Fig. 3, we show the @� and �1 dependences of the
calculated ground-state energies including the 3BC effects
of 40Ca. We take the values of @� ¼ 13 MeV and �1 ¼ 20
for Nijm I, and @� ¼ 14 MeV and �1 ¼ 18 for CD Bonn
as the optimal values. Since we handle a heavier system
40Ca than 16O, we need a larger model space to obtain the
converged results. The optimal values are given in

Table III. The results of Eg:s: are less attractive than the

experimental value similarly to the case of 16O. However,
for CD Bonn, the calculation attains 99.5% of the experi-
mental energy, and the difference between the result and
experiment is only 1.78 MeV. This difference is much
smaller than that for 16O despite the fact that the absolute
value of the ground-state energy of 40Ca is much larger
than that of 16O. This fact suggests that the NNN force
plays a complicated role in the inner (dense) and outer
(thin) regions of the nuclei.
In Fig. 4(a), the @� and �1 dependences of the calcu-

lated ground-state energies including the 3BC effects of
56Ni are illustrated for CD Bonn. A converging result is
seen at @� ¼ 14 MeV and �1 ¼ 18. However, the energy
difference between the two values for �1 ¼ 16 and 18 at
the energy minima amounts to 7.38 MeV which is some-
what large compared to the case of 40Ca where the differ-
ence is 1.97 MeV. The results for the CD-Bonn potential
show a regular pattern of convergence (in contrast to the
results for N3LO in Fig. 1). In order to estimate the
remaining effect of the larger model space, we perform
an extrapolation, as given in Refs. [12,13], using the fol-

lowing formula: Eg:s:ð�1Þ ¼ E1 þ Ce���2
1 , where E1, C,

and � are the coefficients determined in the least-squares
fitting procedure. We have found that the data points for
@� ¼ 14 MeV from �1 ¼ 8 to 18 are well fitted with this
formula. The curve given by the formula is shown in
Fig. 4(b). The optimal values of the coefficients are E1 ¼
�473:17 MeV, C ¼ �316:06 MeV, and � ¼ 1:3148�
10�2. Therefore, the extrapolated ground-state energy for
�1 ! 1 becomes Eg:s:ð�1 ! 1Þ ¼ E1 ¼ �473:17 MeV.

The difference between the extrapolated value and the
result for �1 ¼ 18 is 3.82 MeV, and thus the result for �1 ¼
18, is considered to be an almost converged value. The
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FIG. 3 (color online). Same as Fig. 1, but for 40Ca.

TABLE III. Same as Table I, but for 40Ca.

Nijm I CD Bonn Expt.

40Ca Eð1þ2BCÞ �296:29 �334:34
Eð3BCÞ �5:83 �5:92
Eg:s: �302:12 �340:27 �342:05
BE=A 7.55 8.51 8.55

TABLE II. The calculated energies of the one- and two-body
cluster terms Eð1þ2BCÞ, the 3BC terms Eð3BCÞ, and the total energy
Eð¼ �BEÞ of the lowest 1=2� and 3=2� states of the spin-orbit
doublets in 15O and 15N. The quantity Es:o: is the spin-orbit
splitting energy including the 3BC effects. The energy difference
Ediff of the ground-state energies between 15O and 15N is also
given. All energies are in MeV.

J� Nijm I CD Bonn Expt.

15O 3=2� Eð1þ2BCÞ �81:17 �90:38
Eð3BCÞ �4:61 �4:59
E �85:77 �94:97 �105:78

1=2� Eð1þ2BCÞ �85:71 �96:24
Eð3BCÞ �5:01 �4:58
E �90:72 �100:81 �111:96
Es:o: 4.95 5.84 6.18

15N 3=2� Eð1þ2BCÞ �84:58 �94:00
Eð3BCÞ �4:59 �4:58
E �89:17 �98:58 �109:17

1=2� Eð1þ2BCÞ �89:14 �99:87
Eð3BCÞ �4:99 �4:55
E �94:13 �104:42 �115:49
Es:o: 4.96 5.84 6.32

Ediff 3.41 3.60 3.54
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FIG. 4 (color online). (a) Same as Fig. 1, but for 56Ni. (b) The
extrapolation curve of Eg:s: of

56Ni. See text for details.
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extrapolated value reproduces 97.8% of the experimental
ground-state energy.

In Table IV, the optimal value of @� ¼ 14 MeV and
�1 ¼ 18 and the extrapolated one for 56Ni using the CD-

Bonn potential are listed. The extrapolation for Eð1þ2BCÞ in
the same manner has been performed, and its result is also
given. It is seen that the 3BC effect of 56Ni is considerably
larger than that of 40Ca. This may reflect the difference of
the shell closure, namely, 0f7=2 subshell closed for 56Ni

and 1s0d major-shell closed for 40Ca.
In summary, we have applied the UMOA to the ground

states of the closed-shell nuclei 16O, 40Ca, and 56Ni, and the
single-hole states in 15O and 15N. The pf-shell nucleus
56Ni is the heaviest one for which this kind of ab initio
calculation has been performed. The binding energies in-
cluding the 3BC effects have been obtained using the
Nijm I, the CD Bonn, and the chiral N3LO NN inter-
actions. We have found that the chiral N3LO interaction
gives rather large 3BC contribution to the ground-state
energy of 16O compared to the other two forces. All results
lack the binding energies in reproducing the experimen-
tal data. However, the magnitude of the missing energy
depends considerably on the interactions employed. The
CD-Bonn potential gives quite good results close to the
experimental values for all nuclei in the present work. The
inclusion of the NNN force is expected to make attractive
contributions and compensate for the remaining discrep-
ancies between the results and experiments.

One may compare the present results with recent micro-
scopic calculations [10,23,26–28] using realistic NN
forces including the ones used here. Although the present
and recent methods give similar results, there still remain
some discrepancies. It is an important problem to clarify
the origins of the discrepancies in order to develop the
microscopic many-body methods.

For a deeper understanding of nuclei, the use of more
fundamental forces is of great interest. Recently, a novel
NN force from a lattice QCD calculation has been re-
ported, and a more elaborate work of nuclear force is in

progress [29]. We will pursue studies using forces based
upon the lattice QCD.
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