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Charge-dependent calculations of single-particle energies in nuclei arountfO with modern
nucleon-nucleon interactions
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The binding energies of the ground states and several excited states related to single-particle and -hole states
in nuclei around'®O are calculated taking charge dependence into account. Effective interactions on the
particle basis are constructed from modern charge-dependent nucleon-nucleon interactions and the Coulomb
force within the framework of the unitary-model-operator approach. Single-pa¢ttuide) energies are ob-
tained from the energy differences of the binding energies between a péntitdestate in’O or F (N or
150) and the ground state fO. The resultant spin-orbit splittings are small for the hole state and large for the
particle state in comparison with the experimental values though the differences between the experimental and
calculated values are not very large. The charge dependence of the calculated single-particle energies for the
ground states are in good agreement with the experimental values. Furthermore, the Thomas-Ehrman shift due
to the Coulomb force for thes], states int’O and’F can be observed.
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[. INTRODUCTION alistic nucleon-nucleon interaction using a renormalization
The sinal iicle level i f the fund tal st group technique or conventional effective interaction theory
€ singié-paruicie level s one ot the fundamental StuC,y, gagneret al. [11]. The application oy, to the calcu-

tures in.nuc!ei.. Important physjcal quantities such as _thq tion of ground-state properties of the closed-shell nuclei
spin-orbit splittings and the magic numbers are characterize and“’Ca has been done in RéfL2]

by the single-particle level. Recently, it has been argued that As one of the methods for solving nuclear many-body

some magic numbers disappear and new magic NUMbE[R hems, we have developed the unitary-model-operator ap-

ahrise in nuclei fne_ar fhe dripllinle[i,zl]. When we calculate proach(UMOA) [13]. An energy-independent and Hermitian
the energies of single-particie levels in neutron- or protoN<fative interaction is derived through a unitary transforma-
rich nuclei, it would be desirable that the calculation formal-

ism is based h icle basis. Ad fth ; Ition of an original Hamiltonian. Nuclear ground-state prop-
Ism Is based on the particle basis. Advantages of the partic ?rties, such as the ground-state energy, charge radius, and

basis forlma]!ism r?we that the Coulor?]b forclze cz:tjn bfefz treate ingle-particle energy have been calculatedf& [14] and
accurately for the proton-proton channel and efiects o 9Ca[15]. We have learned that spin-orbit splittings for hole

charge dependence in realistic nuclear forces are taken intQ.:og are enlarged by taking second-order diagrams into ac-

account in structure calculations. In the particle-basis formalbount. Furthermore, the UMOA has been developed for the

ism, one can obtain the energy differe'nces between Protoly . cture calculation ofv hypernuclei and applied t@qGO,
and neutron levels for not onlf=Z nuclei but also neutron- 1ca, and“'Ca using hyperon-nucleon interactions in free

or proton-rich nuclei in the same manner. space [16,17. Differences in the properties of modern

The calculation of single-particle energies starting with ahyperon—nucleon interactions have been disclosed in the

nucleon-nucleon force in free space is a fundamental probs—tructure calculation.

lem in theoretical nuclear physics. There have been many Recently, we have extended the formulation of the
attempts to understand the structure of single-particle IeveItSJMOA frorr’1 the isospin basis to the particle one for the

as vr\]/ell Iaslo;[_her ground-séate propei)rtlg-s t'r? nuﬁfﬁ]mt- Iln d urpose of the charge-dependent calculation. To confirm the
such calculations, we need a many-body theory that leads alidity of the calculation method based on the particle basis,
an effective interaction in a restricted model space for g < paper, we apply this method 0 and its neighbor-
nucleus in many cases. For this purpose, Genatrix has ing nuclei15l\’| 150, 70, and™’F. Binding energies of these

been W|dely_used as a basic ingredient in performing SUUCH clei are calculated for the ground states, and excited states
ture calculat|olr;s{8,9]._ A recent StUdY of the doubly closed- which have the single-particle or single-hole structure as the
shell nucleus™0 using th9G ma?“'ces constructed from ain component. The single-particle energy in the neighbor-
modern nucleon-nucleon Interactions can b? seen in Re ng nuclei is given as the relative energy between a single-
[10]. Lately, as an alternative of th& matrix, a low- particle(-hole) state in the neighboring nuclei and the ground
momentum potentiaVio,. has been constructed from a re- g0 ofleg As for the single-particlé-hole) state, the exci-

tation up to two-particle one-holéone-particle two-hole

from the unperturbed ground state ‘60 are taken into ac-
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Four high-precision nucleon-nucleon interactions repre- The two-body effective interaction,, of Hermitian type
sented in momentum space are employed, namely, this written as
Nijmegen 93 (Nijm 93) [18], Nijm | [19], the charge- _ i
dependent BonriCD Bonn [20], and the next-to-next-to- v12= U (hg + 01U — hy, (1)
. 3 . .
next-to-leading orde(N°LO) potential[21] based on chiral where vy, is the bare two-body interaction artg is the

perturbation theory[22,23 which has recently been con- one-body part of the two-body system which consists of
structed by Entem and Machleidt. In these potentials, effect§ o \inetic energyty(t,) and, if necessary, the single-

m;fehni'rgli ﬁgeggsggeoiremt:ls(gg émghgﬁczumbgzi f'_ft ”r‘]'f rticle potentialu,(u,) ashy=t;+u;+t,+u,. The operator
P als ; X 9 N WG for the unitary transformation dfi;+v,, can be written
several kinds of meson are incorporated. On the other han

the essential degrees of freedom of the mesons in N s[24]

potential are only for the pions. Therefore, thé&L® poten- U=(1+o-o)l+oo +olw) 2?2 )

tial is constructed in a low-momentum region compared to

the meson-exchange potentials which have heavier mesordy introducing the operatow satisfying w=QwP and

However, the RLO potential has the high accuracy to repro- thus w?=w'2=0. The above expression bf agrees with the

duce the nucleon-nucleon data beldy,=290 MeV, and block form using the projection operatoPsand Q of kubo

thus the NLO potential as well as other high-precision [25] given by

nucleon-nucleon interactions can be used in nuclear structure ~ B

calculations. ~ ( Pl+0'w) VP -Po'(l+we) 1’2Q> .
This paper is organized as follows. In Sec. Il, the methods Qo1 +o'w) P Q1 +we)TQ

for deriving effective interactions and performing structure _
calculations are given. In Sec. Ill, calculated results}fi@ e should note here that the operaltbis also expressed as

and its neighboring nuclei using the four realistic interactions U=eS (4)
are presented. Finally, we summarize the present work in '
Sec. IV. where S is anti-Hermitian and given under the restrictive
conditionsPSP=QSQ=0 by
Il. METHOD OF CALCULATION S= arctanfio - ). (5)

In the UMOA, the Hamiltonian to be considered is given |5 order to obtain the matrix elements @f we first solve
by a cluster expansion of a unitarily transformed Hamil-gyactly the two-body eigenvalue equation as
tonian. In the previous workgl3,14, many-body correla-
tions up to three-body cluster terms have been evaluated. It (hg+ v1)| P = E| D). (6)

has been confirmed that the cluster expansion in the numeri- ] )

cal calculation for'0 shows the good convergence at the With the eigenvectof®y), the matrix elements ab on the

three-body cluster level. We may say that since we considd?@sis statefp) in the P space anda) in the Q space can be

the N=Z nuclei around®O in the present study, the three- determined as

body cluster terms do not have a significant contribution to d

the energy difference between the single-partiehele) lev- _ ~

els of the proton and neutron. Therefore, in the present cal- (d|w|p) —E<Q|Q|¢k><¢k|p>, (7)

culation, we neglect the three-body cluster terms for simplic-

ity. The evaluation of the three-body cluster terms based owhere d is the dimension of theP space and(¢ is

the particle basis is a further challenge which should be acthe biorthogonal state of¢y)=P|®,), which means the

complished for a deeper understanding of nuclei. matrix inversion [(¢|p)]=[(p’|d]t and satisfies

In the following sections, we present a general framewor& ~ _ o~ _

for deriving an effective interaction and a practical method~P (A|P)pld)=de  and 2y (p |¢k><‘ék|p>_5pyp" It

should be noted that the set of eigenstaigd,),k

for the structure calculation in the present study. )
=1,2,... d} is selected so that they have the largeéstpace
overlaps among all the eigenstates in E).
A. Derivation of effective interaction in the P and Q spaces Then, in order to obtain the matrix elements Wf we
In the usual sense of effective interaction theory, an effecintroduce the eigenvalue equation fofw in the P space as
tive interaction is defined in a low-momentum model space + 5 8
(P spacg. However, in general, one can also derive an effec- 'l = pjag. (8)
tive interaction in the complemenQ spacg of the P space  gjng the solutions to the above equation, we define the ket
by making the decoupling condition for the effective interac-
I Y o vector |y as
tionv asQuP=0. Note that the projection operatdsandQ

satisfy the usual relations &®+Q=1, P>=P, Q?=Q, and 1

PQ=QP=0. We here present a general framework for deriv- [0 = —olay), (9)
ing a two-body effective interaction of Hermitian type for a H

two-body system. which is also written as
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1
(qmy = — 2 (glw|pXpl|ay-
Mk p

Using Egs.(8)—(10), we obtain the matrix elements of the

unitary-transformation operat® in Eq. (2) as

(p'|Ulp) = (p'|(1 + 0'w)4p)
d

= > (1 +pd) ™ YHp | alp),
k=1

(qlU]p) = (glw(1 + w'w)¥3p)
d

= kZl (1 + wd) Y2l mXalp),
(PlU]a) == (plw'(1 + ww") )
d
=- kE (1 + ) Y20 pla)(wdap,
=1

and

(@'|U]a) =(q'|(1 + w")4q)
d

= 2 {1+ ) ™2 = 1K' [l + 8y

k=1

(10)

(11

(12)

(13

(14)

Thus, the matrix elements of the effective interacfigain

Eq. (1) can be written as

(i[o2i) = %‘, (ilU™Hk)KIho + 111U} = Cilhglj),

where i), |j), |k), and|l) denote the basis states in tRe

+Q space.

The above formulation is employed for deriving the effe

(15
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FIG. 1. Model spacePff; and its complemeanfp) for the np
channel in the first-step calculation.

would be favorable when the evaluation of many-body cor-
rection terms has to be limited in the actual calculation.

In our earlier calculations, the effective interaction was
derived by a three-step procedure with some approximations
to take account of single-particle potentials up to a high-
momentum region. In the present work, however, we adopt a
two-step procedure and approximation methods are refined,
because the performance of the computer has been greatly
improved and some approximations in the previous works
are not needed at present. In the following, we shall give the
two-step procedure for the numerical calculation.

1. First-step calculation

In this work, we employ the harmonic-oscillat¢ho)
wave functions as the basis states. Two-nucleon states for
Z=nn, np, pp channels consisting of the product of the ho
states are given by

|a,3>z = |na| aj alMy, nblbj bmb>Z- (16)

c- The model spacé’(zl) and its complemer@(zl) composed of

tive interaction in the present study. Here we note that sincée two-nucleon states for th& channel are defined with a
we treat a many-body system, the single-particle potential boundary numbep, as

(uy) in hy for both particle and hole states is introduced to
obtain a good unperturbed energy. In the following, a proce-
dure for determining the effective interaction and the single-

particle potential is given.

B. Two-step method for the calculation of effective interaction

PY if 2n, + 1 +2n, + 1, <
|a,3>ze{ z a™la bTlh=p1 17)

QY otherwise,
which is also illustrated only for thep channel in Fig. 1.

The nn and pp channels are considered similarly in the ac-
tual calculation. The value gf; is taken as large as possible

In nuclear many-body problems, how to determine theso that the calculated results do not depend on this value.
single-particle potential for particleunoccupiedl states as The p; dependence of calculated results will be investigated
well as hole(occupied states is important in connection with in Sec. Ill. The symbolg, and p, in Fig. 1 stand for the

the evaluation of many-body correlatiofig6—29. In our

uppermost occupied states of the neutron and proton, respec-

calculations, the single-particle potential, which is deter-tively, and in the present case 8D, p, andp, are the @,
mined self-consistently with the two-body effective interac-0rbits. TheQy; and Qx, spaces defined witlpy, pn, pp,

tion, is calculated up to a sufficiently high-momentum re-and pyx in the Q

ff) space should be excluded due to the

gion. In general, this choice of the single-particle potentialPauli principle when we calculate matrix elements of the
leads to a deeper binding of the ground-state energy of hare two-body interaction. The value pf is determined
nucleus in the lowest order. Then, effects of the many-bodyo that the Pauli principle from the states in 1Qg, and
correlations of higher order become smaller than the choic®yx, spaces can well be taken into account, and taken as
of only the kinetic energy for the particle state. This trendpx=2n,+1,+2n,+1,=20 in the present study.
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Itis noted that, in this first step, the effective interaction isparticle potentials u'” and u” are calculated self-
constructed using the relative and center-of-mé&ssn)  consistently with the two-body effective interaction,
states of the ho wave functions. Since we consider a hug&hich will be shown later.

Hilbert space, it is very difficult to use the basis states com- AL ; }
posed of the product of the single-particle ho states in th%p;::)ii?np;[irgaoal?sz can be written under the angle-average
model and complementary spaces. In the following, we shall

give a practical method for calculating the effective interac-gi = > 02(n,1,N,L,S,3)|nISJ,NLXnISJ,NL,
tion and the single-particle potential. In order to derive the nINLS]
two-body effective interaction for each af=nn, np, pp pr<Zn+l+2N+L
channels we rewrite E@6) in terms of the relative and c.m. (20)
states as

where

POt + upa(N, LIPS + QP QY +t
[ z {r 12( )} z QZ rQZ c.m. Hz(n,I,N,L,S,Jr)

+ (PP + QP)o1(PY + Q) ]k:1(1)S3NL); - > - s,
=EJk;1(1")SJ,NL), (18) ab\n'J

p1<2na+|a+2nb+|bSpX

wherel(l") andS are the orbital angular momentum and spin L L1

of a relative state, and, is the total angular momentum vz Ja || : Ja

given byJ,=1+S. The letterk means an additional quantum XVo 2 Io() e 2 Jb

number specifying an eigenstate. The tetnandt, ,, are xS JlIN s 3

the kinetic energies of the relative and c.m. motions, respec- I

tively, and vy, is the bare interaction. The operatQ‘ZD x[)\][)\ ][Ja][Jb][S][J]W(LIJS;)\J,)W(LIJS;)\’Jr)
projects two-body states on to tI@(Zl) space, but Pauli- [L]

forbidden two-body states in th®y; and Qy, spaces are X (NINLA|ngl anpl AYNINLN gl angl o) (21
excluded. The sum of two single-particle potentials in the

relative and c.m. states is denoted by(N,L). We as-  With

sume, in the present study, that the matrix elements in 5 for Z = nn or

solving Eq.(18) are diagonal in each of the c.m. quantum fZ:{ - PP (22)
numbersN andL. Thus, the resultant effective interaction 1 for Z=np.

becomes also diagonal in the c.m. quantum numbers.
The matrix elements af;,(N,L) can be written under the
angle-average approximati¢h4,3Q as

Note that, as for thean and pp channels, the calculation
should be done only fdr+S=even. Thdettera (b) for the
summation in Eq(21) means a set of the quantum num-

(IS J,NLjuso(N,L)[n'l’S 3,NL); bersa={n,,l,,ja,z=n or p} of a single-particle ho state.
, The conditions of the summation of single-particle states
=&, > (=1 a andb for the nn and pp channels arda<p,,,b>p,} and
NaNalalaMblbib {a<py,b>p,}, respectively. As for thenp channel,{a
A < pn.b>p,} or {a>p,,b=<p,}. Here for example, the no-
la 3 dallla 3 ia tation {a<p,,b>p,} for the np channel means that the
N T T summation is done for occupied states of the neutron and
b 2 o) 2 b unoccupied states of the proton.
NS JJIV S It should be noted that Eq18) is solved exactly by di-
RIRIE agonalizing the matrix elements of several hundred
X [N ][Ja][Jb][S][J]W(LIJS;)\Jr)W(LI’JS)\’Jr) coordinate-space ho basis states for each channel on the as-
[L] sumption of the diagonal c.m. quantum numbers. If we em-
X (NINLA|NGlanpl pA ("I NLN [n2langlph ') ploy a bare interaction in momentum-space representation,
Dl Dy the Fourier transformation for the ho wave function is
X ((nglajaluz Inglaja) + (Nalajalty, INGlaia)) (19 needed in calculating the matrix elements of the bare inter-

action. Using the eigenvectgk;I(1")SJ,NL), the operator

where[x]=2x+1 andJ is the total angular momentum for Eq. (7) can be written in terms of relative and c.m.

two single-particle h% stiates gliven gy:jaﬂbr'] The coeffl- giates. Then, the matrices of the effective interactihin
cients{---}, W(--+), an <n~_-|_na a ) denote the Wigner 9- Eq. (15 are obtained in the relative and c.m. states as
symbols, the Racah coefficients, and the ho transformatloms‘mlz(N L)[n’I’'S3), through Egs.(7)~(15). Note that
brackets, respectively. Note that, as for tireandpp chan- 0 45 not need the-space effective interaction in the first-

nels, the ca(lgulatlor}l)should be done only feiS=even. The g0 cajculation if we take a sufficiently large model space.
quantitiesu, - andu, ' represent the single-particle poten-  The transformation of the effective interaction in the rela-
tials of the neutrorunl) or proton u? in the first-step cal- tive and c.m. states into the one in the shell-model states can

culation, depending oB=nn, np, pp channels. The single- be performed straightforwardly as
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1 1 V4
(abloi3ledh, = > CMNELL9
\1+5ab\'1+5cdnlnlJS A ~
NLAN P Vi
TN TR PG CIRN AN ANARAYAVAL
la 3 da|lle 2 e e
1 1 4
XVl 5 Jo)la 3 Jd Py,
NS JJIN S T @
np
X W(LIIS;NI)WILIT IS J,) ﬁecoupnmg
P
X (NINLA|ngl angl AN’ T NLN [nl cngl g\ ') 1P Py AN "
X (NISIFYN,LIN'1'Sz, (23 = Pr
where FIG. 2. Model spacePff; and its complemeanfp) for the np
14s channel in the second-step calculation.
" S)—{1+(_1) for Z=nnor pp (24
z = - o : , . , S
1 for Z=np, fective interaction determined in the first-step calculation is

which is required for the antisymmetrization of the matrix Unitarily transformed again so that the matrix elements for
elements in the shell-model states. Note theS=even for tWo-particle two-hole(2p2h) excitation reduce to zero. This
the nn and pp channels. is an essential point of the_ UMOA. By virtug of this, a num-
The single-particle potentiab.‘zl) andu® in Eq. (19) are ber of many-body correlations with the vertices of the effec-
. . A 2 .. tive interaction are reduced compared to the usual linked-
determlneg) self-con-3|ste.ntly with the two-body effective in-Juster expansion with th& matrix. In the UMOA, such
teractionuvy,, which is written as many-body correlations can be evaluated in a cluster expan-

1 1 sion of the unitarily transformed Hamiltonian with the verti-
@uPla’y= > J / (23+1) ces ofSin Eq. (5), the one-body Hamiltonian, and the two-
szsnnp N1+ g m 1+ 0arm body effective interaction.
m:occupied
X (amp{Yla’ m;.z (25) 2. Second-step calculation
for the neutron and Using the two-body effective interacti(frfl) determined

1 1 in the first-step calculation, we consider the internal Hamil-
az=ppnp N1+ Oam V1 +6arm @ _
m:occupied Hine = E ti+ 2 vjj Tems (27)

<

X (malvfy|ma); z (26) -

whereT, , is the kinetic energy of the c.m. motion. In this

second step, the calculations are performed using the basis
states of the product of the single-particle ho states. In order
to remove spurious c.m. states, we add the c.m. Hamiltonian

for the proton.

The procedure for the self-consistent calculation is as fol-
lows. First, we input initial values aig) andu(zi in Eq.(19),
and solve the eigenvalue equation in Etg) for each ofZ
=nn, np, pp channels. Through Eq$7)—(15), the effective
interaction in the form of the reduced matrix element is de-

termined. Then, the new single-particle potentials are calcu- 199
lated through Eq923)—«26). These new values of the single-
particle potentials are used in E¢L9), and the iterative S 110
calculation is performed until the calculated results converge. é

We remark here that one of the practical methods of the B,
structure calculations using the present effective interaction W —120F

would be the shell-model diagonalization. However, the ap-
plication of such a calculation may be limited only to light
nuclei, because we must take account of many single-particle —130
states in the model space and the dimension of the matrices
to be diagonalized becomes very huge. Since we intend to
obtain only the energies of the ground state of the closed-
shell nucleus and the single-partic(ehole) states in its FIG. 3. Convergence of the unperturbed ground-state energy for
neighboring nuclei, we proceed to the next step for a morehe iterative calculation fot0 in the second-step calculation for
practical calculation. In the second-step calculation, the efp;=12 and%{)=14 MeV. The CD-Bonn potential is employed.

2 4 6
number of iteration
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FIG. 4. The hQ) dependence of calculated
ground-state energies 8fO for p;=12 for the
Nijm-93 and the CD-Bonn potentials.

j- We assume that the nucleon mass is the mean

value of the neutron and proton. As for the valueBaf,, in

(28)

Eqg. (28), in the present study, we simply take Bs,,=1
which could be acceptable as discussed in RE34,32.
Thus, the Hamiltonian to be considered in the second-step

calculation becomes

The ho potential.. ,, can be written with the mass number

A and the nucleon mass as

1 A-2
UC_m_: %Am QZRZ = E ( XI] - Xij) ’
i< \A-1 A(A-1) where
(29
where X;=3(2mQ2R? and x;=3(m/2)Q%7. The defini-
tions of the coordinates arEl A/AZ 1y, ,J:%(ri+r]-),
p,=6 pm-a-op=12
p,= 8 p,= 14
p,=10 p,=16
o p,=18
L T 0 4 _8 L T ]
C Nijme3 A E Nijm | , -
-8 0 1 0 o
Ko X ’ /_,* ] - L
%‘ L I P
L s 4
é‘é E e A
u _go:_*« ..... _ o " A JE_:
[, R
L e a,
- §\~ I S - a/}{
E \\*ﬂ.__\_ ..... — Er//,o// ]
—qogf, | esegesd ] LT
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r 1 o 1 L 1
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o fa T we s ]
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M, et ] | Dosoomer
12 14 16 12 14 16
A2(MeV) f2(MeV)
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3
H=Hip+ Hom=2 t + 2 V(A )= 50, (30
i i<j
1 A-2
=) 4 —_
V(A =3 s AA—D) (31)

Note that the above two-body interactionAsdependent.

FIG. 5. Then() andp, dependences of calcu-
lated ground-state energies with thplh effect
of 180 for various modern nucleon-nucleon inter-
actions.
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TABLE I. The calculated ground-state energies with tipéteffect and the binding energies per nucleon
of 180. In these calculated values, the optimal valueg@Qffor each interaction are employed. As for the
value ofp;, we take ap,=14 for the CD Bonn ang;=16 for the other interactions as the sufficiently large
value as suggested in Fig. 5. The experimental values are taken frorfBBefAll energies are in MeV.

160 Nijm 93 Nijm | N3LO CD Bonn Expt.
Egs. -99.69 -104.25 -110.00 -115.61 -127.62
BE/A 6.23 6.52 6.88 7.23 7.98

The central aim of the present study is to calculate thewvith a good total angular momentum and parity for the
binding energies of the ground state'80 and its neighbor-  channel. We solve the above eigenvalue equation exactly by
ing nuclei, and to obtain single-particle energies using theliagonalizing the matrix elements in tiell space P
Hamiltonian in Eq.(30). To accomplish this without per- +Q(2), and then obtain the matrix elements\fin this full
forming the full shell-model diagonalization, we proceed tospazce through Eq$7)—(14). In addition, the matrix elements

the decoupling calculation again. The model space in th :
first-step cglcuglation in Fig. 1 i% separated as shO\?vn in Fig. Z(E.)f U for the Py and Py, spaces are given by
The modelspace and itsomplementor the np channel are
denoted b}Pffg andep), respectively. It should be noted that (X'[U[X) = 80 (33
we solve theP-space andQ-space problems on an equal
footing in the second-step calculation, using the effective d
interaction determined in the first-step calculation which has"
already incorporated the effect of the short-range correlation
of the bare interaction. They; andPy, spaces are the Pauli- (p|U[x) ={q|U|x) = (x|U|p) = (x|U|g) = 0, (39
blocked spaces in the second-step calculation.
It would be worthy to mention the property of the effec- . .

tive interaction to be determined in the second-step calcula"-vgf"re|x>’ |P2>) and|q) are the basis states in thg; andPys,
tion. By taking the model and complementary spaces a§z . andQz" spaces, respectively. _
shown in Fig. 2, the resultant effective interacti@@ The calculation procedure in the sgcond step is as follows.
which is determined from the decoupling condition Ve first solve exg)ctly Eo[g)Z) by the diagonalization. As the

(ZZ*U(lzz)p(zz):o for Z=nn, np, pp has no vertices which in- initial values ofu;” andu, " in Eq.(32), we use the single-
duce 22h excitation. This is analogous to the Hartree-Fockparticle potentials determined in the first-step calculation.
(HF) condition which means .that an original Hami!tonian is Through Eqs(7)~(15), the effective interactio@(fz) in this
transformed so that the matrix el_ements farlh excitation 'second step in all th@yy, Py, P(zz)’ and Q(Zz) spaces is de-
reducel to zte_ro. ,lAIthou?h the yer'qcczs ?f the pneEﬁOdyﬁno?d'Eermined. Then, the single-particle potentiaf8 andu” are
agonal matrix elements remain in determining the etiec IVeﬁ:alculated in Egs(25) and (26) using the effective interac-

interaction, these nondiagonal matrix elements are diagonal-" " . . . i
ized at the end of the cal%:ulation. 9 tion 0(122) instead ofﬁ(fz) determined in the first step, and the

The eigenvalue equation for tfechannel in the second- self-consistent calculation is performed iteratively until the

step calculation which corresponds to E6) can be written ~ Calculated results converge.
as As a typical example of the convergence of the self-

_ consistent calculation, in Fig. 3, we show the results of the
{t,, +UP +t, + U2 + VAW 17 2= B W) yr 2, unperturbed ground-state energy 60 in the second-step
(32) calculation with increasing number of iteration fpf=12
with the CD-Bonn potential. The Coulomb interaction is in-
Where|l[lk>‘],,'z represents a two-body eigenstate in terms ofcluded in the calculation. The unperturbed ground-state en-
the basis states of the product of the single-particle ho stateygy Eg“;‘p) of the doubly closed-shell nucleus is given by

—15 0 0~-o--o..99€!f2(_uhp)
I Opy(withcorr) | -20
s A s FIG. 6. The 2} dependence of calculated
B T BN 2 1 single-particle energies fgr,=12 for hole states
< | Q"Q‘fke\o 1% e, ] in 1%0. The left (right) figure is for the proton
Ww=20 opm(uﬁ‘sjong.\__\@ w 0 IJ(SIZ(UI;]%SO‘.O."“~~~. | (neutron Ie\{elg wtlich correspond to the single-
. e v hole states in®N (1°0). The CD-Bonn potential
L i is employed.
~'CD Bonn  gp, (with corr. | "CD Bonn : |
bot2 Psa{ | ) ‘ Rters Ops,z(wnh cort. =
13 14 15 16 13 14 15 16
he2(MeV) h2(MeV)
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15

FIG. 7. Then() andp, dependences of calcu-

< lated single-particle energies with thpzh effect
B for the proton(1*N) and neutron(*°0) levels.
= The CD-Bonn potential is employed.

W

] =25 ok s
R et "&K&;& . OPsp | ':.yﬂgimg_ 0Py
e B 7 S
V/CD Bonn ~ Sy, I CD Bonn ‘EF\\\_
1‘3 1.4 1'5 1'3 1-4 1.5 1,6
he2(MeV) he2(MeV)
: 1 3 - BE(Y0,YF) = EUP + £, ag
Eéugp) =2 @ 1)<<m|t2|m> * —<m|u(22)|m>) - 5hQ, ( )=Egs” * Eopin (38)
= ? 2 and
m:occupied
(39 ~ BE(0,"N) = Eg'tP + Eypon. (39)

where|m) denotes a ho single-particle state for the hole statd NuS, the single-particle energi€s, for the particle and
with a total angular momentury, We also express the un- hole states are written, respectively, as

perturbed single-particle energy"™ for a statela) as E.{*70,“F) = BE(**0) - BE("0,'7F) (40)
EL™ = (alt,Ja) + (alui?|a) for z=n,p. (36) and

15~ 15 — 15~ 15 _ 16,
NotethatE(“Qp) andE(s‘:)”p) are implicitly A dependent due to Esd™0,™N) = BE(™0,™N) - BE(™0). (41)

the propert'y. oﬂ/i(jl)(A) in Eq. (31). We see that the results In the following section, we shall present the calculated re-
in Fig. 3 converge when the number of interaction isSyltS of the energies using Eq85—(41) with some discus-
larger than 4. sions.

C. Diagonalization of the transformed Hamiltonian IIl. RESULTS AND DISCUSSION

step calculation does not contain the interaction which inyyhich are used as the basis states is finite, and some approxi-
duces p2h excitation. However, there remain some termsmations are made. Therefore, the calculated results have the
inducing Iplh excitation in the one-body Hamiltonian, and gependences on the ho enefgy and the value of; which
coupling terms in the two-body interaction betwedndnd  gspecifies the model space in the first-step calculation. In the
1p2h states for occupied states, and betweenafid 1h  following sections, some calculated results are shown with
states for unoccupied states. The transformed Hamiltonian t@e 70 andp, dependences. However, we search for optimal
be diagonalized consists of the kinetic and single-particlg/ajyes of#() and values of; for which the calculated re-
potential parts, and the two-body effective interaction detersyts aimost converge to obtain the final results.

mined in the second-step calculation. As for the closed-shell | order to clarify differences in the properties of modern
nucleus, we diagonalize the transformed Hamiltonian withycleon-nucleon interactions, four interactions represented in
the shell-model basis states, taking into accoyithlexci-  momentum space are employed, namely, the Nijm-93,
tation from the unperturbed ground state. We denote the erjjm-| [18], the CD-Bonn{20] and the NLO [21] potentials,

ergy shift from the unperturbed energy obtained by the diang the Coulomb force is also used commonly. In the calcu-

agonalization byE;y;,. As for the closed-shell nucleus plus |ations, the partial waves up th=<6 are taken into account.
one-particle(one-holg system, the shell-model basis states

are composed of thepland 21lh states(lh and Ip2h

state$. The energy shift from the unperturbed energy ob- A. *0
tained by the diagonalization is expressedEyy, (Eqpon)- In Fig. 4, thezQ dependence of calculated ground-state
The binding energieBE for these systems are given as fol- energies of*%0 for p;=12 using the Nijm-93 and the CD-
lows: Bonn potentials is shown. The unperturbed energy which is
16 np shown as “unp” and the energy with thelh correction are
- BE(T0) = Egg” + Eqpin, (37 displayed separately. The expression of the ground-state en-
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TABLE Il. The calculated single-particle energies with thE2kh

T 12 0py,)) effect for p;=12 in 1N. The values of the spin-orbit splitting en-
| 18 ergy AE(0p)=Eg{0p;/,) —~E{(Ops») are also tabulated. In these
- calculated values, the optimal values 7f) for each single-hole
-1y 6.32 | state and interaction are employed. The resultéfdr=14 MeV are
| as0 | also shown in parentheses. The experimental values are taken from
I T ] Ref. [35]. All energies are in MeV.

| — 592 E (0"3*2):
_20_""“‘93 prome | 15\ Nijm 93 Nijml N3LO CDBonn Expt.
I Vo

Egy(MeV)

L 1/2°(0py,) -14.21 -1456 -14.80 -1571 -12.13
P12 €D Bonn 1 (-14.12 (-1456 (-14.80 (-15.73
-15 o] 3/2°(Opy,) -18.71 -19.37 -20.23 -21.63 -18.45
I (-19.26 (-19.86 (-20.17 (-21.22
| — 0 ] AE(Op) 450 481 5.43 5.92 6.32
- 618 ] (514 (530 (5390  (5.49
%_20_ 4.51 .
=3

484
542

o
2]
w Ty 5.93

I —— 32 0, with the experimental value. The binding energies per
Nijm 93 Xp.

N ] nucleon are also shown. The calculated values are for the
Vo ] optimal 2{) andp; which can be determined from the results
as shown in Fig. 5. The results for the Nijm 93 and the CD
Bonn are the least and most attractive, respectively, of the
four potentials. This tendency can also be observed in the
FIG. 8. The calculated single-particle energies with tp@Hl  Faddeev-Yakubovsky calculations fée by Noggaet al.

effect for p;=12 in >N and 0. The values of the spin-orbit split- [33].

ting are also shown. In these calculated values, the optimal values |t is seen that the calculated ground-state energies are less
of 7€) for each single-hole state and interaction are employed.  pound than the experimental value. In the present calcula-
tion, higher-order correlations such as the three-body cluster

that the effect of the iLh correction has a significant con- terms have not been evaluated. In addition, the real three-
tribution attractively to the ground-state energy. If we use thd?dY force is not taken into account. The inclusion of the real

HF wave functions, the unperturbed ground-state energid€rée-body force and the higher-order many-body correla-
should become more attractive. tions would compensate for the discrepancies between the

We note here that the values #f) at which the energy experimental and calculated values. Such a study remains as
minima are obtained differ from each other between thé? important task for a deeper understanding of nuclear
Nijm-93 and the CD-Bonn potentials, and also between th@round-state properties in the present approach. A coupled-
unperturbed and the unperturbed plysh energies, reflect- cluster calculation of the saturation property concerning the

ing differences in the properties of the two potentials. In the?inding energy and charge radius f8i0 by Mihaila and
calculation of'0, a value aroundQ =14 MeV is often em- Heisenberg has shown that the calculated result agrees well

ployed as a suitable value 61). This value is very close to with the experimental value when a genuine three-body force

that determined by empirical formula such #@=45A-1/3 s included in the calculatiof82].
-25A~2/3 MeV. In the present study, however, we regard the

| p1=12 CD Bonn

ergy with the p1h effect is given in Eq(37) as BE. We see

value at which the energy minimum is obtained as the opti- B. 15N and 150
mal one. The optimal value should be searched for each state ]
in nuclei. Figure 6 shows thé() dependence of calculated single-

Figure 5 illustrates the:Q) and p, dependences of the Particle energies for theDstates in**N and *°O for p,
ground-state energy with theplh effect for the Nijm-93, =12 in the case of the CD-Bonn potential. The unperturbed
Nijm-1, the N3LO, and the CD-Bonn potentials. In principle,

we should take the value @f as large as possible until the TABLE IIl. Same as Table II, except fo°O.
results do not depend om. When we take ag,=14, the
results show fairly good convergence for the CD-Bonn po- °0 Nijm93 Nijm!| N3LO CD Bonn Expt.

tential. As for the Nijm-93, Nijm-I, and the #LO potentials,

almost convergent results are obtained if we take the valud/ZOpyp)  -17.52 -17.96  -18.37  -19.34  -15.66

p1=16. Note that the energy for, =18 atAQ=14 MeV is (-17.5) (-18.00 (-18.34 (-19.27

calculated for the RLO potential in order to confirm the 3/2(Ops) -22.03 -22.80 -23.79  -2527 -21.84

convergence. We see that the results dpr 16 and 18 are (-22.72 (-23.3% (-23.79 (-24.83

almost the same. AE<(0p) 451 4.84 5.42 5.93 6.18
In Table 1, the final results of the ground-state energy with (5210 (537  (5.45 (5.56

the 1plh effect are tabulated for the four potentials together.
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*He
W

&y *H

Lo

FIG. 9. The #() dependence of calculated
ground-state energies dHe, 3H, and 3He for

| ° g/d p1=12. The CD-Bonn potential is employed.
9, 2
“a, unp @
+CD Bonn's._ g
p,=12 G\Gﬂe-o'e"e“‘
TTRs T 20 s TR s 20
£2(MeV) £.2(MeV)

energy and the energy with th@Zh correction are displayed higher-order many-body correlations may compensate for the
separately. The unperturbed single-patrticle energy is given idiscrepancies between the experimental and calculated val-
Eq. (36) and that with the @2h correction is in Eq(41). We  ues.
see that the unperturbed single-particle energies vary consid- In order to see the accuracy of the calculations, it would
erably at around the typicat{)=14 MeV. However, the be worthwhile to apply the present method to the few-
single-particle energies with thep2h correction have the nucleon system&e, *H, and®He as similar systems 50,
saturation points at arourfd) = 14—15 MeV, depending on *°N, and *°0. As for the few-nucleon systems, the binding
the single-particle states. Note that the minimum points foenergies have been calculated precisely by various methods
the ground-state energies bN and >0 correspond to the [36].
maximum points of the single-particle energies in Fig. 6. It In Fig. 9, theA{) dependence of calculated ground-state
should be remarked that the spin-orbit splittings for tipe 0 energies of'He, *H, and®He is shown forp;=12 using the
states in®N and*®0 are significantly enlarged by taking into CD-Bonn potential. The expression of the unperturbed
account the f2h correction. This effect has already been ground-state energy is given in E@5). It is noted that the
shown in our previous works though the calculation was performulas for calculating the unperturbed ground-state ener-
formed perturbatively by taking into account second-ordeies of “He, ®H, and®He are the same. In these cases, only
diagrams on the isospin bagik3,14. the (5, states of the proton and neutron are regarded as the
Figure 7 exhibits the{) and p; dependences of the hole states. However, the results of the unperturbed energies
single-particle energies with thep2h effect. It is seen that are different betweefiHe and®H (*“He and®He) because of
the p; dependence is weaker than that in Fig. 5. This isthe A dependence of the Hamiltonian as given in E2)).
because the results in Fig. 6 are the relative values for th&he expression of the ground-state energy'tdé with the
binding energies of two nuclei as given in Egl), while  1plh correction corresponds to E(7), and that for’H and
those in Fig. 5 are not the relative ones. We may say that, adie with the 2h effect is similar to Eq(39). We see that
for the single-particle energies for the hole states, the resul@lthough the calculated results of the unperturbed ground-
for p,=12 are acceptable as final results in the present studgtate energies oH and®He are the same, the energies with
In Fig. 8, the final results of the single-particle energiesthe 1p2h effect are different because of the charge differ-
with the Ip2h effect for the @ states in*®>N and %0 for  ence.
p1=12 using the four potentials are shown with the values of In Table IV, the calculated ground-state energiestié,
the spin-orbit splitting energy. The optimal valuesfdd for 3H, and3He with the corrections for the optimal values of
each interaction are searched for the binding energié&xpf 7 which can be determined from Fig. 9 are tabulated to-
N, and '®0 in calculating the single-particle energies gether with the results of the no-core shell mo¢CSM)
through Eq.(41). We see that the calculated spin-orbit split- [37,38 and the experimental values. It has been shown that
tings are smaller than the experimental values though ththe NCSM results agree well with the results obtained by
differences between the calculated and experimental values

depend on the nucleon—nucleon '|nteract|ons employed.. Thgnd 3He in the present approximation fpf=12 with those in the
_magnltudes of _these dlscrepanmes_would be red_uced if WRCSM calculations and the experimental values. The CD-Bonn po-
include a genuine three-body force in the calculation as disgnjal is commonly used in the calculations. The experimental val-

TABLE IV. Comparison of the ground-state energieside, °H,

cussed in Refg4,6]. ues are taken from Ref34]. All energies are in MeV.

In Tables Il and lll, the final results of the single-particle
energies shown in Fig. 8 are tabulated. The results for the UMOA NCSM Expt.
typical 2Q)=14 MeV are also displayed in parentheses for
reference. In the case dfQQ=14 MeV, we use this value ®He -6.93 -7.25 -7.72
commonly in calculating the binding energies 50, N, 3H -7.68 -8.00 -8.48
and'°0. It is seen that all the calculated single-particle en- 4He -26.15 -26.30 -28.30
ergies are more attractive than the experimental values. The Eqs(PHe)~Eg4(*H) 0.75 0.75 0.76

inclusion of the three-body force and the evaluation of
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2 < hpWith coIT) a3 2 |67 0d(with cofr.)—e FIG. 10. The#Q dependence of calculated
S JRP- W . 0 o 2} — P B S A _ . . . .
5 o > odtunp) I % o © Gdepunp) ] single-particle energies fgr, =12 in *F and*’O.
w ] Yook . The CD-Bonn potential is employed.
i 154, (With corr.) 1 I 15, (With corr.) ]
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AQ2(MeV) H2(MeV)

accurate methods for few-nucleon systems such as thergy and the energy with thep2h correction are displayed
Faddeev-Yakubovsky calculatigB6]. It is seen that our re- separately. The definition of the single-particle energy with
sults are less bound by several hundred keV than the NCShe correction is given in Eq40). We see that all the unper-
results. In the present approach, higher-order many-body coturbed energies are rather unbound and considerably vary at
relations such as the three-body cluster terms are not takearound the typicalt)=14 MeV. However, some single-
into account. The evaluation of the higher-order many-bodyparticle states become bound at the energy minimum points
correlations would gain more binding energy. We may saypy taking account of the corrections. It should be noted that
however, that our result of the charge dependence in ththe magnitudes of the spin-orbit splitting with thelh ef-
relative energy betweefH and 3He is in good agreement fect for the @ states are not very different from those for the
with the NCSM result and also the experimental value. unperturbed part at arourtd)=14 MeV . This tendency dif-
This kind of agreement of charge dependence can also Hers from the case of the deeply bound hole states for which
seen in the results fdPN and1°0 as shown in Tables 1l and the 1p2h effect plays an important role to enlarge the spin-
[ll. The experimental energy difference of the ground state®rbit splittings as shown in Fig. 6.
between™N and 0 is 3.53 MeV. Our result of the energy  In Fig. 11, we show théiQ) and p, dependences of the
difference of the single-particle energies for thg @ orbits  single-particle energies with the2h effect. We see that the
between'®N and*®0 is 3.63 MeV for the CD Bonn. One can p; dependence for thedg,, and Is,,, states shows the good
see that the results for the other potentials also agree wetlonvergence gi;=12. On the other hand, the results for the
with the experimental value. Thus, we may say that the effec@ds), states do not necessarily convergeat12. Since the
of the Coulomb force for th@p channel is correctly treated 0ds, states of the proton and neutron are highly unbound, it
in our particle-basis formalism. The Coulomb force effect iswould be necessary to take a larger valueppfn order to
also discussed in the following section f&F and'’O. obtain the convergent results. In the present study, however,
we employ the values fop;=12 as the final results of the
C.17E and 170 single-particle energies it/F and*’O. ' _
Figure 12 shows the final results of the single-particle
Figure 10 shows th&() dependence of calculated single- energies with the @1h effect in *’F and 'O for the four
particle energies fop,=12 for the % and @ states in'’F  potentials with the values of the spin-orbit splitting energy.
and 'O with the CD-Bonn potential. The unperturbed en-The optimal values of:Q) are employed for the results. On

ek P,= 8

_ _ FIG. 11. Thek() andp, dependences of cal-
3 3 culated single-particle energies with thplh ef-
= | = fect in 1F and’O for the CD-Bonn potential.
Q p & 4
w \Q‘E“‘ 1i]/,a W 1s4 2.
_____ *7 A
L ******"',‘m/-
OF A - 3 \;;;:*_*__*» — */
. CD Bonn 05> | L CD Bonn L2 N -
X X X X _ . X . 512
13 14 15 16 13 14 15 16

hR(MeV) h2(MeV)
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TABLE V. The calculated single-particle energies with thER
6} —_ 1 effect forp,; =12 in1’F. The values of the spin-orbit splitting energy
| — | AE5(0d) =Eg0dg/,) ~Es(0ds/») and the energy differences be-
F — 312 (0cy) tween the %, and (s, statesAEg4=Egy(1s;/p) ~Es(0ds/,) are
i 1 also tabulated. In these calculated values, the optimal valugg of
> ass 516 564 635 for each single-particle state and interaction are employed. The re-
ga 5 500 sults fora)=14 MeV are also shown in parentheses. The experi-
o’ ' mental values are taken from R¢89]. All energies are in MeV.
OFNIm®s Njmi —— —— 1¥(ts,y) 17F Niim 93 Nijm| N3LO CDBonn Expt.
| Nto CD Bonn = 5/2*(0:15,2)_
py=12 3/2°(0d,)  5.14 536  5.56 5.97 4.40
| (5.50 (5.6 (543 (5.63
ol . — — T ] 1/2+(1sy)) 0.67 0.70 0.58 0.70 -0.11
(0.89 (0.83 (0.52 (0.59
170 —— 3/2°(0d,,)| "
0 5/27(0ds5) 0.30 0.20 -0.08 -0.38 -0.60
2 | 5% 5T em e (022 (02) (-0.09 (-0.26
2 5.08 AEgq 0.37 0.50 0.66 1.08 0.49
w-go 1 (0.62 (062 (057  (0.80
e — - sy AE(0d) 4.84 5.16 5.64 6.35 5.00
-4 NIt o s o] (528 (545 (548  (5.89
p.= 12 CD Bonn  Exp. 52
L P4

agreement has been shown also for the hole states. Further-

FIG. 12. The calculated single-particle energies with tpet2 ~ more, another effect of the Coulomb force appears in the
effect for p;=12 in 1F and 70O for the CD-Bonn potential. The particle states. The experimentad;} states of the proton
values of the spin-orbit splitting are also shown. In these calculate@nd neutron lie above thedg), states by 0.49 and 0.87 MeV
values, the optimal values &) for each single-particle state and in energy, respectively. Thus, the,} state in'’F is close to
interaction are employed. the Ods, state by 0.38 MeV than iHO. This effect is known

as the Thomas-Ehrman shift due to the Coulomb force
the whole, the calculated spin-orbit energies are larger thami—44. In our results, the magnitudes of the shift are from
the experimental values in contrast to the hole state case. W19 to 0.29 MeV for the cases of the optinid® and from
may say, however, that the calculated results become somg:22 to 0.23 MeV foriQ)=14 MeV, depending on the inter-
what smaller if we take a larger value of, because thedd,  actions employed. In the latter case the results hardly depend
states are lowered as suggested in Fig. 11. The calculatesh the potentials, because the unperturbeg,lho wave
results for the grounddy, states agree fairly well with the functions are the same for all the cases using the four inter-
experimental values in contrast to the results for the groundctions, and thus the Coulomb force works equally in the
Op,,, states in*™™N and °0. However we note that, in our calculations. Although some discrepancies between the ex-
preliminary estimation, the three-body cluster effect for theperimental and calculated values are seen, we may say that
particle state shows a repulsive contribution significantly tothe Thomas-Ehrman effect can be observed in our results.
the single-particle energy if only the two-body interaction is V. SUMMARY AND CONCLUSIONS
employed[40].

In Tables V and VI, the final results of the single-particle  The method for calculating the ground-state energy and
energies shown in Fig. 12 are tabulated together with th&ingle-particle energy has been developed within the frame-
spin-orbit splitting energies for thedGstates and the energy
differences between thesy, and s, states. The values for
the typical2Q)=14 MeV are also displayed in parentheses 170
for reference. We may say that our results for the magnitudes

TABLE VI. Same as Table V, except fdrO.

Nijm 93 Nijm| NS°LO CD Bonn Expt.

of these two splittings are not very different from the experi-3/2+(0ds,,) 2.03 2.21 2.30 2.67 0.94
mental values. However, we should take account of the real (2.33 (2.47) (2.19 (2.37
three-body force and evaluate higher-order many-body €Oy /2+(1s,,) —255 —257 —2.82 -2.76 -3.27

rection terms to obtain more reliable results. This kind of

study is in progress. (F243 (249 (289  (-287

We here discuss effects of the Coulomb force. The experi—5/2+(0d5/2) —3.11 ~3.36 —3.73 -4.11 —4.14
mental mass difference betweéfF and1’O is 3.54 MeV. (-328 (-3.33 (-3.66 (-3.89
The calculated results lie between 3.41 and 3.73 MeV for the AEgq 0.56 0.79 0.91 1.35 0.87
four potentials in the case of the optin/a{) and between (0.8 (0.89 (0.80 (1.02
3.50 and 3.63 MeV in the case bf)=14 MeV as seen from A (0d) 5.14 5.57 6.03 6.78 5.08
the values in Tables V and VI. These calculated values are in (5.61) (5.80 (5.85 (6.26

good agreement with the experimental value. This kind of
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work of the unitary-model-operator approa@hMOA). The  mental value. On the other hand, the influence of the inclu-
expressions for the numerical calculation have been recaston of the D1h effect on the spin-orbit splittings for thedO
from the isospin basis to the particle one for the chargeparticle states is rather small. On the whole, the calculated
dependent structure calculation. We have applied the UMOApin-orbit splittings for the hole and particle states in nuclei
to 160, 5N, %0, 17F, and*’O employing modern nucleon- around*O are not very different from the experimental val-
nucleon interactions, such as the Nijm-93, Nijm-Il, the CD-ues though the results somewhat depend on the interactions
Bonn, and the RLO potentials which have charge depen- employed.
dence. The Coulomb force has been also used forpihe In the present work, higher-order many-body correlations
channel. In order to obtain the final results, we have searcheslich as the three-body cluster terms are not evaluated. In
for the optimal values ofiQ) and the values o, for which  addition, the real three-body force is not included in the cal-
the calculated results almost converge. culations. We should take account of these effects for a
The accuracy of the approximation in the present methodleeper understanding of the nuclear structure.
has been investigated by calculating the ground-state ener- By virtue of the extension of the calculation method to the
gies of “He, *H, and®He and comparing the present results particle basis, the present method can be applied to proton-
with the accurate no-core shell-mod®CSM) results. We  or neutron-rich nuclei in the same manner. The mechanism
have found that the energy differences between the NCSMf the variation of magic numbers near the drip lines may be
and our results for these systems are several hundred keV fotarified from a microscopic point of view. The study of
the CD-Bonn potential. As for the energy difference betweemeutron-rich nuclei around“O is in progress. Results for
3H and®He, our result agrees well with the NCSM result andthese systems will be reported elsewhere in the near future.
the experimental value.
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