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The binding energies of the ground states and several excited states related to single-particle and -hole states
in nuclei around16O are calculated taking charge dependence into account. Effective interactions on the
particle basis are constructed from modern charge-dependent nucleon-nucleon interactions and the Coulomb
force within the framework of the unitary-model-operator approach. Single-particle(-hole) energies are ob-
tained from the energy differences of the binding energies between a particle(hole) state in17O or 17F (15N or
15O) and the ground state of16O. The resultant spin-orbit splittings are small for the hole state and large for the
particle state in comparison with the experimental values though the differences between the experimental and
calculated values are not very large. The charge dependence of the calculated single-particle energies for the
ground states are in good agreement with the experimental values. Furthermore, the Thomas-Ehrman shift due
to the Coulomb force for the 1s1/2 states in17O and17F can be observed.
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I. INTRODUCTION

The single-particle level is one of the fundamental struc-
tures in nuclei. Important physical quantities such as the
spin-orbit splittings and the magic numbers are characterized
by the single-particle level. Recently, it has been argued that
some magic numbers disappear and new magic numbers
arise in nuclei near the drip lines[1,2]. When we calculate
the energies of single-particle levels in neutron- or proton-
rich nuclei, it would be desirable that the calculation formal-
ism is based on the particle basis. Advantages of the particle-
basis formalism are that the Coulomb force can be treated
accurately for the proton-proton channel and effects of
charge dependence in realistic nuclear forces are taken into
account in structure calculations. In the particle-basis formal-
ism, one can obtain the energy differences between proton
and neutron levels for not onlyN=Z nuclei but also neutron-
or proton-rich nuclei in the same manner.

The calculation of single-particle energies starting with a
nucleon-nucleon force in free space is a fundamental prob-
lem in theoretical nuclear physics. There have been many
attempts to understand the structure of single-particle levels
as well as other ground-state properties in nuclei[3–7]. In
such calculations, we need a many-body theory that leads to
an effective interaction in a restricted model space for a
nucleus in many cases. For this purpose, theG matrix has
been widely used as a basic ingredient in performing struc-
ture calculations[8,9]. A recent study of the doubly closed-
shell nucleus16O using theG matrices constructed from
modern nucleon-nucleon interactions can be seen in Ref.
[10]. Lately, as an alternative of theG matrix, a low-
momentum potentialVlow-k has been constructed from a re-

alistic nucleon-nucleon interaction using a renormalization
group technique or conventional effective interaction theory
by Bogneret al. [11]. The application ofVlow-k to the calcu-
lation of ground-state properties of the closed-shell nuclei
16O and40Ca has been done in Ref.[12].

As one of the methods for solving nuclear many-body
problems, we have developed the unitary-model-operator ap-
proach(UMOA) [13]. An energy-independent and Hermitian
effective interaction is derived through a unitary transforma-
tion of an original Hamiltonian. Nuclear ground-state prop-
erties, such as the ground-state energy, charge radius, and
single-particle energy have been calculated for16O [14] and
40Ca [15]. We have learned that spin-orbit splittings for hole
states are enlarged by taking second-order diagrams into ac-
count. Furthermore, the UMOA has been developed for the
structure calculation ofL hypernuclei and applied toL

16O,

L
17Ca, andL

41Ca using hyperon-nucleon interactions in free
space [16,17]. Differences in the properties of modern
hyperon-nucleon interactions have been disclosed in the
structure calculation.

Recently, we have extended the formulation of the
UMOA from the isospin basis to the particle one for the
purpose of the charge-dependent calculation. To confirm the
validity of the calculation method based on the particle basis,
in this paper, we apply this method to16O and its neighbor-
ing nuclei 15N, 15O, 17O, and17F. Binding energies of these
nuclei are calculated for the ground states, and excited states
which have the single-particle or single-hole structure as the
main component. The single-particle energy in the neighbor-
ing nuclei is given as the relative energy between a single-
particle(-hole) state in the neighboring nuclei and the ground
state of16O. As for the single-particle(-hole) state, the exci-
tation up to two-particle one-hole(one-particle two-hole)
from the unperturbed ground state of16O are taken into ac-
count.*Electronic address: sfujii@nt.phys.s.u-tokyo.ac.jp
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Four high-precision nucleon-nucleon interactions repre-
sented in momentum space are employed, namely, the
Nijmegen 93 (Nijm 93) [18], Nijm I [19], the charge-
dependent Bonn(CD Bonn) [20], and the next-to-next-to-
next-to-leading ordersN3LOd potential[21] based on chiral
perturbation theory[22,23] which has recently been con-
structed by Entem and Machleidt. In these potentials, effects
of charge dependence are taken into account. The first three
potentials are based on meson-exchange models in which
several kinds of meson are incorporated. On the other hand,
the essential degrees of freedom of the mesons in the N3LO
potential are only for the pions. Therefore, the N3LO poten-
tial is constructed in a low-momentum region compared to
the meson-exchange potentials which have heavier mesons.
However, the N3LO potential has the high accuracy to repro-
duce the nucleon-nucleon data belowElab=290 MeV, and
thus the N3LO potential as well as other high-precision
nucleon-nucleon interactions can be used in nuclear structure
calculations.

This paper is organized as follows. In Sec. II, the methods
for deriving effective interactions and performing structure
calculations are given. In Sec. III, calculated results for16O
and its neighboring nuclei using the four realistic interactions
are presented. Finally, we summarize the present work in
Sec. IV.

II. METHOD OF CALCULATION

In the UMOA, the Hamiltonian to be considered is given
by a cluster expansion of a unitarily transformed Hamil-
tonian. In the previous works[13,14], many-body correla-
tions up to three-body cluster terms have been evaluated. It
has been confirmed that the cluster expansion in the numeri-
cal calculation for16O shows the good convergence at the
three-body cluster level. We may say that since we consider
the N.Z nuclei around16O in the present study, the three-
body cluster terms do not have a significant contribution to
the energy difference between the single-particle(-hole) lev-
els of the proton and neutron. Therefore, in the present cal-
culation, we neglect the three-body cluster terms for simplic-
ity. The evaluation of the three-body cluster terms based on
the particle basis is a further challenge which should be ac-
complished for a deeper understanding of nuclei.

In the following sections, we present a general framework
for deriving an effective interaction and a practical method
for the structure calculation in the present study.

A. Derivation of effective interaction in the P and Q spaces

In the usual sense of effective interaction theory, an effec-
tive interaction is defined in a low-momentum model space
(P space). However, in general, one can also derive an effec-
tive interaction in the complement(Q space) of the P space
by making the decoupling condition for the effective interac-
tion ṽ asQṽP=0. Note that the projection operatorsP andQ
satisfy the usual relations asP+Q=1, P2=P, Q2=Q, and
PQ=QP=0. We here present a general framework for deriv-
ing a two-body effective interaction of Hermitian type for a
two-body system.

The two-body effective interactionṽ12 of Hermitian type
is written as

ṽ12 = U−1sh0 + v12dU − h0, s1d

where y12 is the bare two-body interaction andh0 is the
one-body part of the two-body system which consists of
the kinetic energyt1st2d and, if necessary, the single-
particle potentialu1su2d ash0= t1+u1+ t2+u2. The operator
U for the unitary transformation ofh0+v12 can be written
as f24g

U = s1 + v − v†ds1 + vv† + v†vd−1/2 s2d

by introducing the operatorv satisfying v=QvP and
thusv2=v†2=0. The above expression ofU agrees with the
block form using the projection operatorsP andQ of kubo
f25g given by

U = S Ps1 + v†vd−1/2P − Pv†s1 + vv†d−1/2Q

Qvs1 + v†vd−1/2P Qs1 + vv†d−1/2Q
D . s3d

We should note here that the operatorU is also expressed as

U = eS, s4d

where S is anti-Hermitian and given under the restrictive
conditionsPSP=QSQ=0 by

S= arctanhsv − v†d. s5d

In order to obtain the matrix elements ofv, we first solve
exactly the two-body eigenvalue equation as

sh0 + v12duFkl = EkuFkl. s6d

With the eigenvectoruFkl, the matrix elements ofv on the
basis statesupl in the P space anduql in the Q space can be
determined as

kquvupl = o
k=1

d

kquQuFklkf̃kupl, s7d

where d is the dimension of theP space andkf̃ku is
the biorthogonal state ofufkl=PuFkl, which means the
matrix inversion fkf̃kuplg=fkp8 ufklg−1 and satisfies

op kf̃kuplkpufk8l=dk,k8 and ok kp8 u f̃klkfkupl=dp,p8. It
should be noted that the set of eigenstateshuFkl ,k
=1,2, . . . ,dj is selected so that they have the largestP-space
overlaps among all the eigenstates in Eq.s6d.

Then, in order to obtain the matrix elements ofU, we
introduce the eigenvalue equation forv†v in the P space as

v†vuakl = mk
2uakl. s8d

Using the solutions to the above equation, we define the ket
vector unkl as

unkl =
1

mk
vuakl, s9d

which is also written as
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kqunkl =
1

mk
o
p

kquvuplkpuakl. s10d

Using Eqs.s8d–s10d, we obtain the matrix elements of the
unitary-transformation operatorU in Eq. s2d as

kp8uUupl = kp8us1 + v†vd−1/2upl

= o
k=1

d

s1 + mk
2d−1/2kp8uaklkakupl, s11d

kquUupl = kquvs1 + v†vd−1/2upl

= o
k=1

d

s1 + mk
2d−1/2mkkqunklkakupl, s12d

kpuUuql = − kpuv†s1 + vv†d−1/2uql

= − o
k=1

d

s1 + mk
2d−1/2mkkpuaklknkuql, s13d

and

kq8uUuql = kq8us1 + vv†d−1/2uql

= o
k=1

d

hs1 + mk
2d−1/2 − 1jkq8unklknkuql + dq,q8.

s14d

Thus, the matrix elements of the effective interactionṽ12 in
Eq. s1d can be written as

ki uṽ12u jl = o
k,l

ki uU−1uklkkuh0 + v12ullkl uUu jl − ki uh0u jl,

s15d

where uil, u jl, ukl, and ull denote the basis states in theP
+Q space.

The above formulation is employed for deriving the effec-
tive interaction in the present study. Here we note that since
we treat a many-body system, the single-particle potentialu1
su2d in h0 for both particle and hole states is introduced to
obtain a good unperturbed energy. In the following, a proce-
dure for determining the effective interaction and the single-
particle potential is given.

B. Two-step method for the calculation of effective interaction

In nuclear many-body problems, how to determine the
single-particle potential for particle(unoccupied) states as
well as hole(occupied) states is important in connection with
the evaluation of many-body correlations[26–29]. In our
calculations, the single-particle potential, which is deter-
mined self-consistently with the two-body effective interac-
tion, is calculated up to a sufficiently high-momentum re-
gion. In general, this choice of the single-particle potential
leads to a deeper binding of the ground-state energy of a
nucleus in the lowest order. Then, effects of the many-body
correlations of higher order become smaller than the choice
of only the kinetic energy for the particle state. This trend

would be favorable when the evaluation of many-body cor-
rection terms has to be limited in the actual calculation.

In our earlier calculations, the effective interaction was
derived by a three-step procedure with some approximations
to take account of single-particle potentials up to a high-
momentum region. In the present work, however, we adopt a
two-step procedure and approximation methods are refined,
because the performance of the computer has been greatly
improved and some approximations in the previous works
are not needed at present. In the following, we shall give the
two-step procedure for the numerical calculation.

1. First-step calculation

In this work, we employ the harmonic-oscillator(ho)
wave functions as the basis states. Two-nucleon states for
Z=nn, np, pp channels consisting of the product of the ho
states are given by

uablZ = unalajama,nblbjbmblZ. s16d

The model spacePZ
s1d and its complementQZ

s1d composed of
the two-nucleon states for theZ channel are defined with a
boundary numberr1 as

uablZ P HPZ
s1d if 2na + la + 2nb + lb ø r1

QZ
s1d otherwise,

s17d

which is also illustrated only for thenp channel in Fig. 1.
The nn and pp channels are considered similarly in the ac-
tual calculation. The value ofr1 is taken as large as possible
so that the calculated results do not depend on this value.
The r1 dependence of calculated results will be investigated
in Sec. III. The symbolsrn and rp in Fig. 1 stand for the
uppermost occupied states of the neutron and proton, respec-
tively, and in the present case of16O, rn andrp are the 0p1/2
orbits. TheQX1 and QX2 spaces defined withr1, rn, rp,
and rX in the Qnp

s1d space should be excluded due to the
Pauli principle when we calculate matrix elements of the
bare two-body interaction. The value ofrX is determined
so that the Pauli principle from the states in theQX1 and
QX2 spaces can well be taken into account, and taken as
rX =2na+ la+2nb+ lb=20 in the present study.

FIG. 1. Model spacePnp
s1d and its complementQnp

s1d for the np
channel in the first-step calculation.
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It is noted that, in this first step, the effective interaction is
constructed using the relative and center-of-mass(c.m.)
states of the ho wave functions. Since we consider a huge
Hilbert space, it is very difficult to use the basis states com-
posed of the product of the single-particle ho states in the
model and complementary spaces. In the following, we shall
give a practical method for calculating the effective interac-
tion and the single-particle potential. In order to derive the
two-body effective interaction for each ofZ=nn, np, pp
channels we rewrite Eq.(6) in terms of the relative and c.m.
states as

fPZ
s1dhtr + u12sN,LdjPZ

s1d + QZ
s1dtrQZ

s1d + tc.m.

+ sPZ
s1d + Q̄Z

s1ddv12sPZ
s1d + Q̄Z

s1ddguk; lsl8dSJr,NLlZ

= Ekuk; lsl8dSJr,NLlZ, s18d

wherelsl8d andSare the orbital angular momentum and spin
of a relative state, andJr is the total angular momentum
given byJr = l +S. The letterk means an additional quantum
number specifying an eigenstate. The termstr and tc.m. are
the kinetic energies of the relative and c.m. motions, respec-

tively, and v12 is the bare interaction. The operatorQ̄Z
s1d

projects two-body states on to theQZ
s1d space, but Pauli-

forbidden two-body states in theQX1 and QX2 spaces are
excluded. The sum of two single-particle potentials in the
relative and c.m. states is denoted byu12sN,Ld. We as-
sume, in the present study, that the matrix elements in
solving Eq.s18d are diagonal in each of the c.m. quantum
numbersN andL. Thus, the resultant effective interaction
becomes also diagonal in the c.m. quantum numbers.

The matrix elements ofu12sN,Ld can be written under the
angle-average approximation[14,30] as

knlS Jr,NLuu12sN,Ldun8l8S Jr,NLlZ

= dl,l8 o
ll8J

nana8lajanblbjb

s− 1dl+l8

35la
1
2 ja

lb
1
2 jb

l S J
65 la

1
2 ja

lb
1
2 jb

l8 S J
6

3
flgfl8gf jagf jbgfSgfJg

fLg
WsLlJS;lJrdWsLl8JS;l8Jrd

3knlNLlunalanblbllkn8l8NLl8una8lanblbl8l

3sknalajauuz1

s1duna8lajal + knalajauuz2

s1duna8lajald, s19d

wherefxg;2x+1 andJ is the total angular momentum for
two single-particle ho states given byJ= j a+ j b. The coeffi-
cientsh¯j, Ws¯d, andknl¯ unala¯l denote the Wigner 9-j
symbols, the Racah coefficients, and the ho transformation
brackets, respectively. Note that, as for thenn andpp chan-
nels, the calculation should be done only forl +S=even. The
quantitiesuz1

s1d and uz2

s1d represent the single-particle poten-

tials of the neutronun
s1d or protonup

s1d in the first-step cal-
culation, depending onZ=nn, np, pp channels. The single-

particle potentials un
s1d and up

s1d are calculated self-
consistently with the two-body effective interaction,
which will be shown later.

The operatorQ̄Z
s1d can be written under the angle-average

approximation as

Q̄Z
s1d = o

r1 , 2n + l + 2N + L
nlNLSJr

uZsn,l,N,L,S,JrdunlSJr,NLlknlSJr,NLu,

s20d

where

uZsn,l,N,L,S,Jrd

= 1 − o
r1 , 2na + la + 2nb + lb ø rX

abll8J

s− 1dl+l8fZ

35la
1
2 ja

lb
1
2 jb

l S J
65 la

1
2 ja

lb
1
2 jb

l8 S J
6

3
flgfl8gf jagf jbgfSgfJg

fLg
WsLlJS;lJrdWsLlJS;l8Jrd

3knlNLlunalanblbllknlNLl8unalanblbl8l s21d

with

fZ = H2 for Z = nn or pp

1 for Z = np.
s22d

Note that, as for thenn and pp channels, the calculation
should be done only forl +S=even. Theletter a sbd for the
summation in Eq.s21d means a set of the quantum num-
bers a;hna, la, ja,z=n or pj of a single-particle ho state.
The conditions of the summation of single-particle states
a andb for the nn andpp channels arehaørn,b.rnj and
haørp,b.rpj, respectively. As for thenp channel, ha
ørn,b.rpj or ha.rn,børpj. Here for example, the no-
tation haørn,b.rpj for the np channel means that the
summation is done for occupied states of the neutron and
unoccupied states of the proton.

It should be noted that Eq.(18) is solved exactly by di-
agonalizing the matrix elements of several hundred
coordinate-space ho basis states for each channel on the as-
sumption of the diagonal c.m. quantum numbers. If we em-
ploy a bare interaction in momentum-space representation,
the Fourier transformation for the ho wave function is
needed in calculating the matrix elements of the bare inter-
action. Using the eigenvectoruk; lsl8dSJr ,NLlZ, the operator
v in Eq. (7) can be written in terms of relative and c.m.
states. Then, the matrices of the effective interactionṽ12

s1d in
Eq. (15) are obtained in the relative and c.m. states as
knlSJruṽ12sN,Ldun8l8SJrlZ through Eqs.(7)–(15). Note that
we do not need theQ-space effective interaction in the first-
step calculation if we take a sufficiently large model space.

The transformation of the effective interaction in the rela-
tive and c.m. states into the one in the shell-model states can
be performed straightforwardly as
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kabuṽ12
s1ducdlJ,Z =

1
Î1 + da,b

1
Î1 + dc,d

o
NLll8
nln8l8JrS

s− 1dl+l8fZsl,Sd

3 Îf jagf jbgf jcgf jdgflgfl8gfSgfJrg

35la
1
2 ja

lb
1
2 jb

l S J
65 lc

1
2 jc

ld
1
2 jd

l8 S J
6

3WsLlJS;lJrdWsLl8JS;l8Jrd

3knlNLlunalanblbllkn8l8NLl8unclcndldl8l

3knlSJruṽ12
s1dsN,Ldun8l8SJrlZ, s23d

where

fZsl,Sd = H1 + s− 1dl+S for Z = nn or pp

1 for Z = np,
s24d

which is required for the antisymmetrization of the matrix
elements in the shell-model states. Note thatl +S=even for
the nn and pp channels.

The single-particle potentialsuz1

s1d anduz2

s1d in Eq. (19) are
determined self-consistently with the two-body effective in-
teractionv12

s1d, which is written as

kauun
s1dua8l = o

m:occupied
J,Z=nn,np

1
Î1 + da,m

1

Î1 + da8,m

s2J + 1d

3 kamuṽ12
s1dua8mlJ,Z s25d

for the neutron and

kauup
s1dua8l = o

m:occupied
J,Z=pp,np

1
Î1 + da,m

1

Î1 + da8,m

s2J + 1d

3 kmauṽ12
s1duma8lJ,Z s26d

for the proton.
The procedure for the self-consistent calculation is as fol-

lows. First, we input initial values ofuz1

s1d anduz2

s1d in Eq. (19),
and solve the eigenvalue equation in Eq.(18) for each ofZ
=nn, np, pp channels. Through Eqs.(7)–(15), the effective
interaction in the form of the reduced matrix element is de-
termined. Then, the new single-particle potentials are calcu-
lated through Eqs.(23)–(26). These new values of the single-
particle potentials are used in Eq.(19), and the iterative
calculation is performed until the calculated results converge.

We remark here that one of the practical methods of the
structure calculations using the present effective interaction
would be the shell-model diagonalization. However, the ap-
plication of such a calculation may be limited only to light
nuclei, because we must take account of many single-particle
states in the model space and the dimension of the matrices
to be diagonalized becomes very huge. Since we intend to
obtain only the energies of the ground state of the closed-
shell nucleus and the single-particle(-hole) states in its
neighboring nuclei, we proceed to the next step for a more
practical calculation. In the second-step calculation, the ef-

fective interaction determined in the first-step calculation is
unitarily transformed again so that the matrix elements for
two-particle two-holes2p2hd excitation reduce to zero. This
is an essential point of the UMOA. By virtue of this, a num-
ber of many-body correlations with the vertices of the effec-
tive interaction are reduced compared to the usual linked-
cluster expansion with theG matrix. In the UMOA, such
many-body correlations can be evaluated in a cluster expan-
sion of the unitarily transformed Hamiltonian with the verti-
ces ofS in Eq. (5), the one-body Hamiltonian, and the two-
body effective interaction.

2. Second-step calculation

Using the two-body effective interactionṽi j
s1d determined

in the first-step calculation, we consider the internal Hamil-
tonian as

H̃int = o
i

ti + o
i, j

ṽi j
s1d − Tc.m., s27d

whereTc.m. is the kinetic energy of the c.m. motion. In this
second step, the calculations are performed using the basis
states of the product of the single-particle ho states. In order
to remove spurious c.m. states, we add the c.m. Hamiltonian

FIG. 2. Model spacePnp
s2d and its complementQnp

s2d for the np
channel in the second-step calculation.

FIG. 3. Convergence of the unperturbed ground-state energy for
the iterative calculation for16O in the second-step calculation for
r1=12 and"V=14 MeV. The CD-Bonn potential is employed.
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Hc.m. so as to constrain the ground-state c.m. motion in the
ho potential with the frequencyV as

Hc.m.= bc.m.STc.m.+ Uc.m.−
3

2
"VD . s28d

The ho potentialUc.m. can be written with the mass number
A and the nucleon massm as

Uc.m.=
1
2Am V2R2 = o

i, j
S 1

A − 1
Xij −

A − 2

AsA − 1d
xijD ,

s29d

where Xij =
1
2s2mdV2Ri j

2 and xij =
1
2sm/2dV2r i j

2. The defini-
tions of the coordinates areR=s1/Adoi r i, Ri j =

1
2sr i +r jd,

andr i j =r i −r j. We assume that the nucleon mass is the mean
value of the neutron and proton. As for the value ofbc.m. in
Eq. s28d, in the present study, we simply take asbc.m.=1
which could be acceptable as discussed in Refs.f31,32g.
Thus, the Hamiltonian to be considered in the second-step
calculation becomes

H̃ = Hint + Hc.m.=o
i

ti + o
i, j

Ṽi j
s1dsAd −

3

2
"V, s30d

where

Ṽij
s1dsAd = ṽi j

s1d +
1

A − 1
Xij −

A − 2

AsA − 1d
xij . s31d

Note that the above two-body interaction isA dependent.

FIG. 4. The "V dependence of calculated
ground-state energies of16O for r1=12 for the
Nijm-93 and the CD-Bonn potentials.

FIG. 5. The"V andr1 dependences of calcu-
lated ground-state energies with the 1p1h effect
of 16O for various modern nucleon-nucleon inter-
actions.
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The central aim of the present study is to calculate the
binding energies of the ground state of16O and its neighbor-
ing nuclei, and to obtain single-particle energies using the
Hamiltonian in Eq.(30). To accomplish this without per-
forming the full shell-model diagonalization, we proceed to
the decoupling calculation again. The model space in the
first-step calculation in Fig. 1 is separated as shown in Fig. 2.
The modelspace and itscomplementfor the np channel are
denoted byPnp

s2d andQnp
s2d, respectively. It should be noted that

we solve theP-space andQ-space problems on an equal
footing in the second-step calculation, using the effective
interaction determined in the first-step calculation which has
already incorporated the effect of the short-range correlation
of the bare interaction. ThePX1 andPX2 spaces are the Pauli-
blocked spaces in the second-step calculation.

It would be worthy to mention the property of the effec-
tive interaction to be determined in the second-step calcula-
tion. By taking the model and complementary spaces as
shown in Fig. 2, the resultant effective interactionṽ12

s2d

which is determined from the decoupling condition
QZ

s2dṽ12
s2dPZ

s2d=0 for Z=nn, np, pp has no vertices which in-
duce 2p2h excitation. This is analogous to the Hartree-Fock
(HF) condition which means that an original Hamiltonian is
transformed so that the matrix elements for 1p1h excitation
reduce to zero. Although the vertices of the one-body nondi-
agonal matrix elements remain in determining the effective
interaction, these nondiagonal matrix elements are diagonal-
ized at the end of the calculation.

The eigenvalue equation for theZ channel in the second-
step calculation which corresponds to Eq.(6) can be written
as

htz1
+ uz1

s2d + tz2
+ uz2

s2d + Ṽ12
s1dsAdjuCklJp,Z = EkuCklJp,Z,

s32d

where uCklJp,Z represents a two-body eigenstate in terms of
the basis states of the product of the single-particle ho states

with a good total angular momentum and parity for theZ
channel. We solve the above eigenvalue equation exactly by
diagonalizing the matrix elements in thefull space PZ

s2d

+QZ
s2d, and then obtain the matrix elements ofU in this full

space through Eqs.s7d–s14d. In addition, the matrix elements
of U for the PX1 andPX2 spaces are given by

kx8uUuxl = dx,x8 s33d

and

kpuUuxl = kquUuxl = kxuUupl = kxuUuql = 0, s34d

whereuxl, upl, anduql are the basis states in thePX1 andPX2,
PZ

s2d, andQZ
s2d spaces, respectively.

The calculation procedure in the second step is as follows.
We first solve exactly Eq.(32) by the diagonalization. As the
initial values ofuz1

s2d anduz2

s2d in Eq. (32), we use the single-
particle potentials determined in the first-step calculation.
Through Eqs.(7)–(15), the effective interactionṽ12

s2d in this
second step in all thePX1, PX2, PZ

s2d, andQZ
s2d spaces is de-

termined. Then, the single-particle potentialsun
s2d andup

s2d are
calculated in Eqs.(25) and (26) using the effective interac-
tion ṽ12

s2d instead ofṽ12
s1d determined in the first step, and the

self-consistent calculation is performed iteratively until the
calculated results converge.

As a typical example of the convergence of the self-
consistent calculation, in Fig. 3, we show the results of the
unperturbed ground-state energy of16O in the second-step
calculation with increasing number of iteration forr1=12
with the CD-Bonn potential. The Coulomb interaction is in-
cluded in the calculation. The unperturbed ground-state en-
ergy Eg.s.

sunpd of the doubly closed-shell nucleus is given by

TABLE I. The calculated ground-state energies with the 1p1h effect and the binding energies per nucleon
of 16O. In these calculated values, the optimal values of"V for each interaction are employed. As for the
value ofr1, we take asr1=14 for the CD Bonn andr1=16 for the other interactions as the sufficiently large
value as suggested in Fig. 5. The experimental values are taken from Ref.[34]. All energies are in MeV.

16O Nijm 93 Nijm I N3LO CD Bonn Expt.

Eg.s. −99.69 −104.25 −110.00 −115.61 −127.62

BE/A 6.23 6.52 6.88 7.23 7.98

FIG. 6. The "V dependence of calculated
single-particle energies forr1=12 for hole states
in 16O. The left (right) figure is for the proton
(neutron) levels which correspond to the single-
hole states in15N s15Od. The CD-Bonn potential
is employed.
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Eg.s.
sunpd = o

m:occupied
z=n,p

s2jm + 1dSkmutzuml +
1

2
kmuuz

s2dumlD −
3

2
"V,

s35d

whereuml denotes a ho single-particle state for the hole state
with a total angular momentumjm. We also express the un-
perturbed single-particle energyEsp

sunpd for a stateual as

Esp
sunpd = kautzual + kauuz

s2dual for z= n,p. s36d

Note thatEg.s.
sunpd andEsp

sunpd are implicitly A dependent due to

the property ofṼij
s1dsAd in Eq. s31d. We see that the results

in Fig. 3 converge when the number of interaction is
larger than 4.

C. Diagonalization of the transformed Hamiltonian

The transformed Hamiltonian determined in the second-
step calculation does not contain the interaction which in-
duces 2p2h excitation. However, there remain some terms
inducing 1p1h excitation in the one-body Hamiltonian, and
coupling terms in the two-body interaction between 1h and
1p2h states for occupied states, and between 1p and 2p1h
states for unoccupied states. The transformed Hamiltonian to
be diagonalized consists of the kinetic and single-particle
potential parts, and the two-body effective interaction deter-
mined in the second-step calculation. As for the closed-shell
nucleus, we diagonalize the transformed Hamiltonian with
the shell-model basis states, taking into account 1p1h exci-
tation from the unperturbed ground state. We denote the en-
ergy shift from the unperturbed energy obtained by the di-
agonalization byE1p1h. As for the closed-shell nucleus plus
one-particle(one-hole) system, the shell-model basis states
are composed of the 1p and 2p1h states (1h and 1p2h
states). The energy shift from the unperturbed energy ob-
tained by the diagonalization is expressed byE2p1h sE1p2hd.
The binding energiesBE for these systems are given as fol-
lows:

− BEs16Od = Eg.s.
sunpd + E1p1h, s37d

− BEs17O,17Fd = Eg.s.
sunpd + E2p1h, s38d

and

− BEs15O,15Nd = Eg.s.
sunpd + E1p2h. s39d

Thus, the single-particle energiesEsp for the particle and
hole states are written, respectively, as

Esps17O,17Fd = BEs16Od − BEs17O,17Fd s40d

and

Esps15O,15Nd = BEs15O,15Nd − BEs16Od. s41d

In the following section, we shall present the calculated re-
sults of the energies using Eqs.s35d–s41d with some discus-
sions.

III. RESULTS AND DISCUSSION

In the present study, the number of the ho wave functions
which are used as the basis states is finite, and some approxi-
mations are made. Therefore, the calculated results have the
dependences on the ho energy"V and the value ofr1 which
specifies the model space in the first-step calculation. In the
following sections, some calculated results are shown with
the"V andr1 dependences. However, we search for optimal
values of"V and values ofr1 for which the calculated re-
sults almost converge to obtain the final results.

In order to clarify differences in the properties of modern
nucleon-nucleon interactions, four interactions represented in
momentum space are employed, namely, the Nijm-93,
Nijm-I [18], the CD-Bonn[20] and the N3LO [21] potentials,
and the Coulomb force is also used commonly. In the calcu-
lations, the partial waves up toJr ø6 are taken into account.

A. 16O

In Fig. 4, the"V dependence of calculated ground-state
energies of16O for r1=12 using the Nijm-93 and the CD-
Bonn potentials is shown. The unperturbed energy which is
shown as “unp” and the energy with the 1p1h correction are
displayed separately. The expression of the ground-state en-

FIG. 7. The"V andr1 dependences of calcu-
lated single-particle energies with the 1p2h effect
for the proton s15Nd and neutrons15Od levels.
The CD-Bonn potential is employed.
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ergy with the 1p1h effect is given in Eq.(37) as −BE. We see
that the effect of the 1p1h correction has a significant con-
tribution attractively to the ground-state energy. If we use the
HF wave functions, the unperturbed ground-state energies
should become more attractive.

We note here that the values of"V at which the energy
minima are obtained differ from each other between the
Nijm-93 and the CD-Bonn potentials, and also between the
unperturbed and the unperturbed plus 1p1h energies, reflect-
ing differences in the properties of the two potentials. In the
calculation of16O, a value around"V=14 MeV is often em-
ployed as a suitable value of"V. This value is very close to
that determined by empirical formula such as"V=45A−1/3

−25A−2/3 MeV. In the present study, however, we regard the
value at which the energy minimum is obtained as the opti-
mal one. The optimal value should be searched for each state
in nuclei.

Figure 5 illustrates the"V and r1 dependences of the
ground-state energy with the 1p1h effect for the Nijm-93,
Nijm-I, the N3LO, and the CD-Bonn potentials. In principle,
we should take the value ofr1 as large as possible until the
results do not depend onr1. When we take asr1=14, the
results show fairly good convergence for the CD-Bonn po-
tential. As for the Nijm-93, Nijm-I, and the N3LO potentials,
almost convergent results are obtained if we take the value
r1=16. Note that the energy forr1=18 at "V=14 MeV is
calculated for the N3LO potential in order to confirm the
convergence. We see that the results forr1=16 and 18 are
almost the same.

In Table I, the final results of the ground-state energy with
the 1p1h effect are tabulated for the four potentials together

with the experimental value. The binding energies per
nucleon are also shown. The calculated values are for the
optimal"V andr1 which can be determined from the results
as shown in Fig. 5. The results for the Nijm 93 and the CD
Bonn are the least and most attractive, respectively, of the
four potentials. This tendency can also be observed in the
Faddeev-Yakubovsky calculations for4He by Noggaet al.
[33].

It is seen that the calculated ground-state energies are less
bound than the experimental value. In the present calcula-
tion, higher-order correlations such as the three-body cluster
terms have not been evaluated. In addition, the real three-
body force is not taken into account. The inclusion of the real
three-body force and the higher-order many-body correla-
tions would compensate for the discrepancies between the
experimental and calculated values. Such a study remains as
an important task for a deeper understanding of nuclear
ground-state properties in the present approach. A coupled-
cluster calculation of the saturation property concerning the
binding energy and charge radius for16O by Mihaila and
Heisenberg has shown that the calculated result agrees well
with the experimental value when a genuine three-body force
is included in the calculation[32].

B. 15N and 15O

Figure 6 shows the"V dependence of calculated single-
particle energies for the 0p states in15N and 15O for r1
=12 in the case of the CD-Bonn potential. The unperturbed

TABLE II. The calculated single-particle energies with the 1p2h
effect for r1=12 in 15N. The values of the spin-orbit splitting en-
ergy DElss0pd=Esps0p1/2d−Esps0p3/2d are also tabulated. In these
calculated values, the optimal values of"V for each single-hole
state and interaction are employed. The results for"V=14 MeV are
also shown in parentheses. The experimental values are taken from
Ref. [35]. All energies are in MeV.

15N Nijm 93 Nijm I N3LO CD Bonn Expt.

1 /2−s0p1/2d −14.21 −14.56 −14.80 −15.71 −12.13

s−14.12d s−14.56d s−14.80d s−15.73d
3/2−s0p3/2d −18.71 −19.37 −20.23 −21.63 −18.45

s−19.26d s−19.86d s−20.17d s−21.22d
DElss0pd 4.50 4.81 5.43 5.92 6.32

s5.14d s5.30d s5.37d s5.49d

TABLE III. Same as Table II, except for15O.

15O Nijm 93 Nijm I N3LO CD Bonn Expt.

1 /2−s0p1/2d −17.52 −17.96 −18.37 −19.34 −15.66

s−17.51d s−18.00d s−18.34d s−19.27d
3/2−s0p3/2d −22.03 −22.80 −23.79 −25.27 −21.84

s−22.72d s−23.37d s−23.79d s−24.83d
DElss0pd 4.51 4.84 5.42 5.93 6.18

s5.21d s5.37d s5.45d s5.56d

FIG. 8. The calculated single-particle energies with the 1p2h
effect for r1=12 in 15N and15O. The values of the spin-orbit split-
ting are also shown. In these calculated values, the optimal values
of "V for each single-hole state and interaction are employed.
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energy and the energy with the 1p2h correction are displayed
separately. The unperturbed single-particle energy is given in
Eq. (36) and that with the 1p2h correction is in Eq.(41). We
see that the unperturbed single-particle energies vary consid-
erably at around the typical"V=14 MeV. However, the
single-particle energies with the 1p2h correction have the
saturation points at around"V.14–15 MeV, depending on
the single-particle states. Note that the minimum points for
the ground-state energies of15N and 15O correspond to the
maximum points of the single-particle energies in Fig. 6. It
should be remarked that the spin-orbit splittings for the 0p
states in15N and15O are significantly enlarged by taking into
account the 1p2h correction. This effect has already been
shown in our previous works though the calculation was per-
formed perturbatively by taking into account second-order
diagrams on the isospin basis[13,14].

Figure 7 exhibits the"V and r1 dependences of the
single-particle energies with the 1p2h effect. It is seen that
the r1 dependence is weaker than that in Fig. 5. This is
because the results in Fig. 6 are the relative values for the
binding energies of two nuclei as given in Eq.(41), while
those in Fig. 5 are not the relative ones. We may say that, as
for the single-particle energies for the hole states, the results
for r1=12 are acceptable as final results in the present study.

In Fig. 8, the final results of the single-particle energies
with the 1p2h effect for the 0p states in15N and 15O for
r1=12 using the four potentials are shown with the values of
the spin-orbit splitting energy. The optimal values of"V for
each interaction are searched for the binding energies of16O,
15N, and 15O in calculating the single-particle energies
through Eq.(41). We see that the calculated spin-orbit split-
tings are smaller than the experimental values though the
differences between the calculated and experimental values
depend on the nucleon-nucleon interactions employed. The
magnitudes of these discrepancies would be reduced if we
include a genuine three-body force in the calculation as dis-
cussed in Refs.[4,6].

In Tables II and III, the final results of the single-particle
energies shown in Fig. 8 are tabulated. The results for the
typical "V=14 MeV are also displayed in parentheses for
reference. In the case of"V=14 MeV, we use this value
commonly in calculating the binding energies of16O, 15N,
and 15O. It is seen that all the calculated single-particle en-
ergies are more attractive than the experimental values. The
inclusion of the three-body force and the evaluation of

higher-order many-body correlations may compensate for the
discrepancies between the experimental and calculated val-
ues.

In order to see the accuracy of the calculations, it would
be worthwhile to apply the present method to the few-
nucleon systems4He, 3H, and3He as similar systems to16O,
15N, and 15O. As for the few-nucleon systems, the binding
energies have been calculated precisely by various methods
[36].

In Fig. 9, the"V dependence of calculated ground-state
energies of4He, 3H, and 3He is shown forr1=12 using the
CD-Bonn potential. The expression of the unperturbed
ground-state energy is given in Eq.(35). It is noted that the
formulas for calculating the unperturbed ground-state ener-
gies of 4He, 3H, and 3He are the same. In these cases, only
the 0s1/2 states of the proton and neutron are regarded as the
hole states. However, the results of the unperturbed energies
are different between4He and3H (4He and3He) because of
the A dependence of the Hamiltonian as given in Eq.(30).
The expression of the ground-state energy of4He with the
1p1h correction corresponds to Eq.(37), and that for3H and
3He with the 1p2h effect is similar to Eq.(39). We see that
although the calculated results of the unperturbed ground-
state energies of3H and3He are the same, the energies with
the 1p2h effect are different because of the charge differ-
ence.

In Table IV, the calculated ground-state energies of4He,
3H, and 3He with the corrections for the optimal values of
"V which can be determined from Fig. 9 are tabulated to-
gether with the results of the no-core shell model(NCSM)
[37,38] and the experimental values. It has been shown that
the NCSM results agree well with the results obtained by

TABLE IV. Comparison of the ground-state energies of4He, 3H,
and 3He in the present approximation forr1=12 with those in the
NCSM calculations and the experimental values. The CD-Bonn po-
tential is commonly used in the calculations. The experimental val-
ues are taken from Ref.[34]. All energies are in MeV.

UMOA NCSM Expt.

3He −6.93 −7.25 −7.72
3H −7.68 −8.00 −8.48

4He −26.15 −26.30 −28.30

Eg.s.s3Hed−Eg.s.s3Hd 0.75 0.75 0.76

FIG. 9. The "V dependence of calculated
ground-state energies of4He, 3H, and 3He for
r1=12. The CD-Bonn potential is employed.
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accurate methods for few-nucleon systems such as the
Faddeev-Yakubovsky calculation[36]. It is seen that our re-
sults are less bound by several hundred keV than the NCSM
results. In the present approach, higher-order many-body cor-
relations such as the three-body cluster terms are not taken
into account. The evaluation of the higher-order many-body
correlations would gain more binding energy. We may say,
however, that our result of the charge dependence in the
relative energy between3H and 3He is in good agreement
with the NCSM result and also the experimental value.

This kind of agreement of charge dependence can also be
seen in the results for15N and15O as shown in Tables II and
III. The experimental energy difference of the ground states
between15N and 15O is 3.53 MeV. Our result of the energy
difference of the single-particle energies for the 0p1/2 orbits
between15N and15O is 3.63 MeV for the CD Bonn. One can
see that the results for the other potentials also agree well
with the experimental value. Thus, we may say that the effect
of the Coulomb force for thepp channel is correctly treated
in our particle-basis formalism. The Coulomb force effect is
also discussed in the following section for17F and17O.

C. 17F and 17O

Figure 10 shows the"V dependence of calculated single-
particle energies forr1=12 for the 1s and 0d states in17F
and 17O with the CD-Bonn potential. The unperturbed en-

ergy and the energy with the 2p1h correction are displayed
separately. The definition of the single-particle energy with
the correction is given in Eq.(40). We see that all the unper-
turbed energies are rather unbound and considerably vary at
around the typical"V=14 MeV. However, some single-
particle states become bound at the energy minimum points
by taking account of the corrections. It should be noted that
the magnitudes of the spin-orbit splitting with the 2p1h ef-
fect for the 0d states are not very different from those for the
unperturbed part at around"V=14 MeV . This tendency dif-
fers from the case of the deeply bound hole states for which
the 1p2h effect plays an important role to enlarge the spin-
orbit splittings as shown in Fig. 6.

In Fig. 11, we show the"V and r1 dependences of the
single-particle energies with the 2p1h effect. We see that the
r1 dependence for the 0d5/2 and 1s1/2 states shows the good
convergence atr1=12. On the other hand, the results for the
0d3/2 states do not necessarily converge atr1=12. Since the
0d3/2 states of the proton and neutron are highly unbound, it
would be necessary to take a larger value ofr1 in order to
obtain the convergent results. In the present study, however,
we employ the values forr1=12 as the final results of the
single-particle energies in17F and17O.

Figure 12 shows the final results of the single-particle
energies with the 2p1h effect in 17F and 17O for the four
potentials with the values of the spin-orbit splitting energy.
The optimal values of"V are employed for the results. On

FIG. 10. The"V dependence of calculated
single-particle energies forr1=12 in 17F and17O.
The CD-Bonn potential is employed.

FIG. 11. The"V andr1 dependences of cal-
culated single-particle energies with the 2p1h ef-
fect in 17F and17O for the CD-Bonn potential.
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the whole, the calculated spin-orbit energies are larger than
the experimental values in contrast to the hole state case. We
may say, however, that the calculated results become some-
what smaller if we take a larger value ofr1, because the 0d3/2
states are lowered as suggested in Fig. 11. The calculated
results for the ground 0d5/2 states agree fairly well with the
experimental values in contrast to the results for the ground
0p1/2 states in15N and 15O. However we note that, in our
preliminary estimation, the three-body cluster effect for the
particle state shows a repulsive contribution significantly to
the single-particle energy if only the two-body interaction is
employed[40].

In Tables V and VI, the final results of the single-particle
energies shown in Fig. 12 are tabulated together with the
spin-orbit splitting energies for the 0d states and the energy
differences between the 1s1/2 and 0d5/2 states. The values for
the typical "V=14 MeV are also displayed in parentheses
for reference. We may say that our results for the magnitudes
of these two splittings are not very different from the experi-
mental values. However, we should take account of the real
three-body force and evaluate higher-order many-body cor-
rection terms to obtain more reliable results. This kind of
study is in progress.

We here discuss effects of the Coulomb force. The experi-
mental mass difference between17F and 17O is 3.54 MeV.
The calculated results lie between 3.41 and 3.73 MeV for the
four potentials in the case of the optimal"V and between
3.50 and 3.63 MeV in the case of"V=14 MeV as seen from
the values in Tables V and VI. These calculated values are in
good agreement with the experimental value. This kind of

agreement has been shown also for the hole states. Further-
more, another effect of the Coulomb force appears in the
particle states. The experimental 1s1/2 states of the proton
and neutron lie above the 0d5/2 states by 0.49 and 0.87 MeV
in energy, respectively. Thus, the 1s1/2 state in17F is close to
the 0d5/2 state by 0.38 MeV than in17O. This effect is known
as the Thomas-Ehrman shift due to the Coulomb force
[41–44]. In our results, the magnitudes of the shift are from
0.19 to 0.29 MeV for the cases of the optimal"V and from
0.22 to 0.23 MeV for"V=14 MeV, depending on the inter-
actions employed. In the latter case the results hardly depend
on the potentials, because the unperturbed 1s1/2 ho wave
functions are the same for all the cases using the four inter-
actions, and thus the Coulomb force works equally in the
calculations. Although some discrepancies between the ex-
perimental and calculated values are seen, we may say that
the Thomas-Ehrman effect can be observed in our results.

IV. SUMMARY AND CONCLUSIONS

The method for calculating the ground-state energy and
single-particle energy has been developed within the frame-

FIG. 12. The calculated single-particle energies with the 2p1h
effect for r1=12 in 17F and 17O for the CD-Bonn potential. The
values of the spin-orbit splitting are also shown. In these calculated
values, the optimal values of"V for each single-particle state and
interaction are employed.

TABLE V. The calculated single-particle energies with the 2p1h
effect forr1=12 in 17F. The values of the spin-orbit splitting energy
DElss0dd=Esps0d3/2d−Esps0d5/2d and the energy differences be-
tween the 1s1/2 and 0d5/2 statesDEsd=Esps1s1/2d−Esps0d5/2d are
also tabulated. In these calculated values, the optimal values of"V
for each single-particle state and interaction are employed. The re-
sults for "V=14 MeV are also shown in parentheses. The experi-
mental values are taken from Ref.[39]. All energies are in MeV.

17F Nijm 93 Nijm I N3LO CD Bonn Expt.

3 /2+s0d3/2d 5.14 5.36 5.56 5.97 4.40

s5.50d s5.66d s5.43d s5.63d
1/2+s1s1/2d 0.67 0.70 0.58 0.70 −0.11

s0.84d s0.83d s0.52d s0.54d
5/2+s0d5/2d 0.30 0.20 −0.08 −0.38 −0.60

s0.22d s0.21d s−0.05d s−0.26d
DEsd 0.37 0.50 0.66 1.08 0.49

s0.62d s0.62d s0.57d s0.80d
DElss0dd 4.84 5.16 5.64 6.35 5.00

s5.28d s5.45d s5.48d s5.89d

TABLE VI. Same as Table V, except for17O.

17O Nijm 93 Nijm I N3LO CD Bonn Expt.

3 /2+s0d3/2d 2.03 2.21 2.30 2.67 0.94

s2.33d s2.47d s2.19d s2.37d
1/2+s1s1/2d −2.55 −2.57 −2.82 −2.76 −3.27

s−2.43d s−2.49d s−2.86d s−2.87d
5/2+s0d5/2d −3.11 −3.36 −3.73 −4.11 −4.14

s−3.28d s−3.33d s−3.66d s−3.89d
DEsd 0.56 0.79 0.91 1.35 0.87

s0.85d s0.84d s0.80d s1.02d
DElss0dd 5.14 5.57 6.03 6.78 5.08

s5.61d s5.80d s5.85d s6.26d
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work of the unitary-model-operator approach(UMOA). The
expressions for the numerical calculation have been recast
from the isospin basis to the particle one for the charge-
dependent structure calculation. We have applied the UMOA
to 16O, 15N, 15O, 17F, and17O employing modern nucleon-
nucleon interactions, such as the Nijm-93, Nijm-I, the CD-
Bonn, and the N3LO potentials which have charge depen-
dence. The Coulomb force has been also used for thepp
channel. In order to obtain the final results, we have searched
for the optimal values of"V and the values ofr1 for which
the calculated results almost converge.

The accuracy of the approximation in the present method
has been investigated by calculating the ground-state ener-
gies of 4He, 3H, and 3He and comparing the present results
with the accurate no-core shell-model(NCSM) results. We
have found that the energy differences between the NCSM
and our results for these systems are several hundred keV for
the CD-Bonn potential. As for the energy difference between
3H and3He, our result agrees well with the NCSM result and
the experimental value.

The good agreement for charge dependence between the
present results and the experimental values is observed also
in the differences in the ground-state energies between15N
and15O, and17F and17O. The effect of charge dependence is
also seen in the Thomas-Ehrman shift for the 1s1/2 states in
17F and17O.

We have shown that the calculated spin-orbit splittings for
the 0p hole states are enlarged significantly by taking the
1p2h effect into account, and become close to the experi-

mental value. On the other hand, the influence of the inclu-
sion of the 2p1h effect on the spin-orbit splittings for the 0d
particle states is rather small. On the whole, the calculated
spin-orbit splittings for the hole and particle states in nuclei
around16O are not very different from the experimental val-
ues though the results somewhat depend on the interactions
employed.

In the present work, higher-order many-body correlations
such as the three-body cluster terms are not evaluated. In
addition, the real three-body force is not included in the cal-
culations. We should take account of these effects for a
deeper understanding of the nuclear structure.

By virtue of the extension of the calculation method to the
particle basis, the present method can be applied to proton-
or neutron-rich nuclei in the same manner. The mechanism
of the variation of magic numbers near the drip lines may be
clarified from a microscopic point of view. The study of
neutron-rich nuclei around24O is in progress. Results for
these systems will be reported elsewhere in the near future.
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