電子の軌道角運動量演算子 (ベクトル) $\hat{\ell}$ とスピン角運動量演算子 (ベクトル) \hat{s} から合成される全角運動量演算子 (ベクトル) $\hat{j}=\hat{\ell}+\hat{s}$ を考える。

- 1. $\hat{\ell}^2$ の固有値を $\hbar^2\ell(\ell+1)$ 、 \hat{s}^2 の固有値を $\hbar^2s(s+1)$ と表し、 \hat{j}^2 の固有値を $\hbar^2j(j+1)$ と表すとき、特に、 $\ell=1$ の場合、j のとりうる値を記せ。
- 2. ベクトルの 2 乗は同じベクトルの内積であることを用いて、 $\hat{\ell}\cdot\hat{\mathbf{s}}$ を j,ℓ,\hbar で表す式を求めよ。

(解答例)

- 1. 角運動量の合成則 (ベクトル模型) と角運動量の量子化(離散性) 電子スピン s=1/2 であることを考慮して、 $j=|\ell-1/2|,\ell+1/2$ である。ここで、 $\ell=1$ を用いると, j=1/2,3/2 となる。
- $2.\ \hat{\hat{m{j}}} = \hat{m{\ell}} + \hat{m{s}}$ の両辺を 2 乗する (同じベクトルの内積をとる) と

$$\hat{\boldsymbol{j}}^{2} = (\hat{\boldsymbol{\ell}} + \hat{\boldsymbol{s}}) \cdot (\hat{\boldsymbol{\ell}} + \hat{\boldsymbol{s}})
\rightarrow \hat{\boldsymbol{j}}^{2} = \hat{\boldsymbol{\ell}}^{2} + 2\hat{\boldsymbol{\ell}} \cdot \hat{\boldsymbol{s}} + \hat{\boldsymbol{s}}^{2}.$$
(1)

ここで、軌道角運動量演算子 $\hat{\ell}$ とスピン角運動量演算子 \hat{s} の順序は可換であることを用いた。式(1)より、

$$\hat{\ell} \cdot \hat{s} = \frac{1}{2} \left(\hat{j}^2 - \hat{\ell}^2 - \hat{s}^2 \right)$$

$$= \frac{\hbar^2}{2} \left[j(j+1) - \ell(\ell+1) - \frac{3}{4} \right]$$
(2)

となる。