自由な粒子 (力の働いていない粒子) に対するシュレディンガー方程式を次の手順で導出する。ここで、粒子の質量をm,エネルギーをE、角振動数を ω 、波数をk,運動量をpとする。ただし、h はプランク定数、それを 2π で割ったものを \hbar とする。

- a. 光量子に対するアインシュタインの関係式を記せ。
- b. 物質粒子に対するド・ブローイの関係式を記せ。
- c. 自由な粒子のエネルギーと運動量、質量の関係式を \hbar, ω, k, m を用いて書きなおせ。
- $\mathrm{d.}~x$ 方向に進行する 1 次元平面波の複素数表現 $\Psi(x,t)=\exp[i(kx-\omega t)]$ に対して、 $\frac{\partial\Psi}{\partial t}, \frac{\partial^2\Psi}{\partial x^2}$ を計算せよ。
- e. 前問 (c), (d) の結果を満たし、条件 1(=線形方程式であること)、条件 2(=p,E) など運動に関係する量を含まないこと)を満たすもっとも簡単な微分方程式を記せ。

(解答例)

- a. アインシュタインの関係式は $E=\hbar\omega$ である。
- b. ド・ブローイの関係式は $p = \hbar k$ である。
- c. 自由な粒子のエネルギーと運動量、質量の関係式は

$$E = \frac{p^2}{2m} \to \hbar\omega = \frac{(\hbar k)^2}{2m} \tag{1}$$

と書きなおせる。

d. 題意より

$$\frac{\partial \Psi}{\partial t} = -i\omega \exp[i(kx - \omega t)] = -i\omega \Psi, \tag{2}$$

$$\frac{\partial^2 \Psi}{\partial x^2} = -k^2 \exp[i(kx - \omega t)] = -k^2 \Psi. \tag{3}$$

が得られる。

e. 式 (1) の両辺に Ψ を右からかけて、前問 (c),(d) の結果を代入すると

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} \tag{4}$$

であること(自由粒子に対する時間に依存するシュレディンガー方程式)がわかる。