非常に高いエネルギーをもつ一次宇宙線は大気上空の原子と衝突して高エネルギー(速さV)のミュー粒子(μ)をつくる。この μ は 6km 位の高空から地上に達することが知られている。地上で測定すると、静止状態の μ は平均寿命 τ (= 2.15×10^{-6} s) で電子 (e^-) と中性微子(ニュートリー人、 ν_{μ})に崩壊する。いかなる粒子も光速度を越えられないので、この μ の平均走行距離は $\tau \times c = (2.15 \times 10^{-6} \mathrm{s}) \times 3.0 \times 10^8 \mathrm{m/s} = 645 \mathrm{m}$ であり、6km の距離を走行して地上に達することはできないことになる。特殊相対論において、二つの立場から、この事実を理解してみよう。

- 1. 速さ V で走行する μ の平均寿命と走行距離を地上(= S 系)で観測する。 その平均寿命 τ' を τ,V,c で表し、その存命中に走行する距離 ℓ を τ,V,c で表わせ。さらに、 V=0.999c(光速度 $c(=3.0\times10^8 \mathrm{m/s}))$ として、 τ' と ℓ を具体的に計算し、 $6\mathrm{km}$ という距離を走行できるか どうかを述べよ。
- 2. 同じ事象を速さ V で走行する μ に固定された座標系 (=S $^{\prime}$ 系) から 測定する。地上において観測される距離 ℓ_0 が走行中の μ には ℓ_0 とは 異なる距離 ℓ' として観測される。この距離 ℓ' を ℓ_0 , V, c で表し、走行に要する時間 T を ℓ_0 , V, c で表わせ。さらに、V=0.999c および $\ell_0=6$ km として、 ℓ' と T を具体的に 計算し、存命中に地上に到達できるかどうかを述べよ。

[解答例]

$$1.$$
 $\sqrt{1-(V/c)^2}=\sqrt{1-(0.999)^2}=0.0447$ だから、地上から見た運動中の μ 粒子の寿命は

$$\tau' = \frac{\tau}{\sqrt{1 - (V/c)^2}} = \frac{2.15 \times 10^{-6} \text{s}}{0.0447} = 4.81 \times 10^{-5} \text{s}.$$

$$\ell = \tau' \times V = \frac{\tau V}{\sqrt{1 - (V/c)^2}}$$
(1)

$$c = 7 \times V - \sqrt{1 - (V/c)^2}$$

$$= 4.81 \times 10^{-5} \text{s} \times (0.999 \times 3.0 \times 10^8 \text{m/s}) = 14.4 \times 10^3 \text{m}$$

$$= 14.4 \text{km}.$$
(2)

よって、6 km より十分長いので、この μ は平均として地上に到達できる。

2. 同様に、運動中の μ 粒子から見た地上までの距離は短くなるので、所要時間は

$$\ell' = \ell_0 \sqrt{1 - (V/c)^2} = 6 \text{km} \times 0.0447$$

$$= 268.2 \text{m}.$$
(3)

$$T = \frac{\ell'}{V} = \frac{\ell_0 \sqrt{1 - (V/c)^2}}{V}$$

$$= \frac{268.2 \text{m}}{0.999 \times 3.0 \times 10^8 \text{m/s}} = 0.895 \times 10^{-6} \text{s.}$$
(4)

となり、寿命よりも十分に短いので平均として地上に到達できる。

以上の結果より、同じ現象が二つの見方から整合的に記述されたことになる。