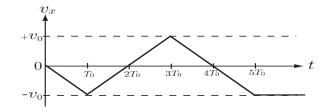
ある粒子のx軸方向の速度 v_x が時間tの関数として次のように与えられている。



- 1. 次の時間区分毎の $v_x(t)$ の関数形を求めよ。
 - $0 \quad t \quad T_0 \; , \; T_0 \quad t \quad \, 3T_0 \; , \; 3T_0 \quad t \quad \, 5T_0 \; , \; 5T_0 \quad t$
- 2. 各時間区分毎の加速度 $a_x(t)$ を計算して、加速度-時間グラフを描け。

(解答例) 1. 与えられたグラフより各時間区分毎に次のようになる。

(I)
$$0 t T_0 : v_x(t) = -\frac{v_0}{T_0}t$$
 (1)

(II) T_0 t $3T_0$: $v_x(t)$ は t の一次関数であるから $v_x = b \cdot t + c$ とおける。 そして、 $(T_0, -v_0), (3T_0, v_0)$ という 2 点を通過するので、

$$\begin{cases}
-v_0 = b \times T_0 + c \\
v_0 = b \times 3T_0 + c
\end{cases}$$

$$\rightarrow 2v_0 = 2T_0 \cdot b \quad \Rightarrow b = \frac{v_0}{T_0}$$

$$\rightarrow -v_0 = \frac{v_0}{T_0} \times T_0 + c \quad \Rightarrow c = -2v_0$$

$$v_x(t) = \frac{v_0}{T_0} \times t - 2v_0 \tag{2}$$

 $(\mathrm{III}) \ 3T_0 \quad t \quad \ 5T_0 \ : \$ 同様に、 $v_x = d \cdot t + e$ とおいて、2 点 $(3T_0, v_0), (5T_0, -v_0)$

$$\begin{cases} v_0 = d \times 3T_0 + e \\ -v_0 = d \times 5T_0 + e \end{cases}$$

$$\to -2v_0 = 2d \cdot T_0 \Rightarrow d = -\frac{v_0}{T_0}$$

$$\to e = v_0 + \frac{v_0}{T_0} \times 3T_0$$

$$= 4v_0$$

$$v_x(t) = -\frac{v_0}{T_0}t + 4v_0$$
(3)

(IV)
$$5T_0 t : v_x(t) = -v_0$$
 (4)

. 加速度 $a_x(t)=rac{dv_x}{dt}$ であるから、

(I)
$$a_x(t) = -\frac{v_0}{T_0}$$
 (5)
(II) $a_x(t) = \frac{v_0}{T_0}$ (6)
(III) $a_x(t) = -\frac{v_0}{T_0}$ (7)
(IV) $a_x(t) = 0$ (8)

$$(II) a_x(t) = \frac{v_0}{T_0} (6)$$

$$(III) \quad a_x(t) = -\frac{v_0}{T_0} \tag{7}$$

$$(IV) a_x(t) = 0 (8)$$

