
人間が前にかがんで質量 M の荷物を持ち上げるときに脊柱に働く力の概念図が右図である。体重を W とすると、胴体の重さ W_1 は約 0.4W である。頭と腕の重さ W_2 は約 0.2W である。R は仙骨が脊柱に作用する力、T は脊椎挙筋が脊柱に及ぼす力である。W, M, θ を使って T を表せ、 $W=60 {\rm kgf}(60 {\rm kg}\, {\bf 1})$, $M=20 {\rm kg}$, $\theta=30$ のとき、T は何 ${\rm kgf}({\rm kg}\, {\bf 1})$ か、 $\sin 12$ $\mathfrak S=0.208$ を使え。

M:荷物の質量

W: 体重(の重力)

 $W_1 \equiv 0.4W$: 胴体の重さ

 $W_2 \equiv 0.2W$:腕と頭の重さ

R: 仙骨が脊椎(背柱)に作用する力

T: 脊椎挙筋 (脊柱のまわりの筋肉) が脊柱に及ぼす力

ここで、(脊柱の下端の周りの力のモーメントの和) = 0より

$$T \cdot \sin 12 \, \circ \cdot \left(\frac{2L}{3}\right) - 0.4W \cdot \cos \theta \cdot \left(\frac{L}{2}\right) - (0.2W + Mg) \cdot \cos \theta \cdot L = 0$$

$$\rightarrow T = \frac{0.4W \cdot \cos 30 \, \circ \cdot \left(\frac{L}{2}\right) + (0.2W + Mg) \cdot \cos 30 \, \circ \cdot L}{\sin 12 \, \circ \cdot \left(\frac{2L}{3}\right)}$$

$$= \frac{0.1 \cdot \sqrt{3} \cdot W + \frac{\sqrt{3}}{2}(0.2W + Mg)}{0.138}$$

$$= 2.48W + 6.28Mg$$

ここで、W = 60 kgf、M = 20 kg のとき、T は

$$T \simeq 2.7 \times 10^2 \text{kgf} = 270 \text{kgf}$$

となる。